Large language models as surrogate models in evolutionary algorithms: A preliminary study

IF 8.2 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Swarm and Evolutionary Computation Pub Date : 2024-09-26 DOI:10.1016/j.swevo.2024.101741
Hao Hao , Xiaoqun Zhang , Aimin Zhou
{"title":"Large language models as surrogate models in evolutionary algorithms: A preliminary study","authors":"Hao Hao ,&nbsp;Xiaoqun Zhang ,&nbsp;Aimin Zhou","doi":"10.1016/j.swevo.2024.101741","DOIUrl":null,"url":null,"abstract":"<div><div>Large Language Models (LLMs) have demonstrated remarkable advancements across diverse domains, manifesting considerable capabilities in evolutionary computation, notably in generating new solutions and automating algorithm design. Surrogate-assisted selection plays a pivotal role in evolutionary algorithms (EAs), especially in addressing expensive optimization problems by reducing the number of real function evaluations. However, whether LLMs can serve as surrogate models remains an unknown. In this study, we propose a novel surrogate model based purely on LLM inference capabilities, eliminating the need for training. Specifically, we formulate model-assisted selection as a classification problem or a regression problem, utilizing LLMs to directly evaluate the quality of new solutions based on historical data. This involves predicting whether a solution is good or bad, or approximating its value. This approach is then integrated into EAs, termed LLM-assisted EA (LAEA). Detailed experiments compared the visualization results of 2D data from 9 mainstream LLMs, as well as their performance on 5-10 dimensional problems. The experimental results demonstrate that LLMs have significant potential as surrogate models in evolutionary computation, achieving performance comparable to traditional surrogate models only using inference. This work offers new insights into the application of LLMs in evolutionary computation. Code is available at: <span><span>https://github.com/hhyqhh/LAEA.git</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":48682,"journal":{"name":"Swarm and Evolutionary Computation","volume":"91 ","pages":"Article 101741"},"PeriodicalIF":8.2000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Swarm and Evolutionary Computation","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2210650224002797","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Large Language Models (LLMs) have demonstrated remarkable advancements across diverse domains, manifesting considerable capabilities in evolutionary computation, notably in generating new solutions and automating algorithm design. Surrogate-assisted selection plays a pivotal role in evolutionary algorithms (EAs), especially in addressing expensive optimization problems by reducing the number of real function evaluations. However, whether LLMs can serve as surrogate models remains an unknown. In this study, we propose a novel surrogate model based purely on LLM inference capabilities, eliminating the need for training. Specifically, we formulate model-assisted selection as a classification problem or a regression problem, utilizing LLMs to directly evaluate the quality of new solutions based on historical data. This involves predicting whether a solution is good or bad, or approximating its value. This approach is then integrated into EAs, termed LLM-assisted EA (LAEA). Detailed experiments compared the visualization results of 2D data from 9 mainstream LLMs, as well as their performance on 5-10 dimensional problems. The experimental results demonstrate that LLMs have significant potential as surrogate models in evolutionary computation, achieving performance comparable to traditional surrogate models only using inference. This work offers new insights into the application of LLMs in evolutionary computation. Code is available at: https://github.com/hhyqhh/LAEA.git.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
进化算法中作为代用模型的大型语言模型:初步研究
大型语言模型(LLMs)在不同领域都取得了显著进步,在进化计算中表现出相当强的能力,特别是在生成新解决方案和自动化算法设计方面。代理辅助选择在进化算法(EAs)中发挥着举足轻重的作用,尤其是通过减少实际函数评估次数来解决昂贵的优化问题。然而,LLM 能否作为代用模型仍是一个未知数。在本研究中,我们提出了一种纯粹基于 LLM 推理能力的新型代理模型,无需训练。具体来说,我们将模型辅助选择表述为分类问题或回归问题,利用 LLM 直接评估基于历史数据的新解决方案的质量。这包括预测解决方案的好坏或近似其价值。然后将这种方法集成到 EA 中,称为 LLM 辅助 EA(LAEA)。详细实验比较了 9 种主流 LLM 的 2D 数据可视化结果,以及它们在 5-10 维问题上的性能。实验结果表明,LLM 在进化计算中作为代用模型具有巨大潜力,其性能可与仅使用推理的传统代用模型相媲美。这项工作为 LLM 在进化计算中的应用提供了新的见解。代码见:https://github.com/hhyqhh/LAEA.git。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Swarm and Evolutionary Computation
Swarm and Evolutionary Computation COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCEC-COMPUTER SCIENCE, THEORY & METHODS
CiteScore
16.00
自引率
12.00%
发文量
169
期刊介绍: Swarm and Evolutionary Computation is a pioneering peer-reviewed journal focused on the latest research and advancements in nature-inspired intelligent computation using swarm and evolutionary algorithms. It covers theoretical, experimental, and practical aspects of these paradigms and their hybrids, promoting interdisciplinary research. The journal prioritizes the publication of high-quality, original articles that push the boundaries of evolutionary computation and swarm intelligence. Additionally, it welcomes survey papers on current topics and novel applications. Topics of interest include but are not limited to: Genetic Algorithms, and Genetic Programming, Evolution Strategies, and Evolutionary Programming, Differential Evolution, Artificial Immune Systems, Particle Swarms, Ant Colony, Bacterial Foraging, Artificial Bees, Fireflies Algorithm, Harmony Search, Artificial Life, Digital Organisms, Estimation of Distribution Algorithms, Stochastic Diffusion Search, Quantum Computing, Nano Computing, Membrane Computing, Human-centric Computing, Hybridization of Algorithms, Memetic Computing, Autonomic Computing, Self-organizing systems, Combinatorial, Discrete, Binary, Constrained, Multi-objective, Multi-modal, Dynamic, and Large-scale Optimization.
期刊最新文献
An ensemble reinforcement learning-assisted deep learning framework for enhanced lung cancer diagnosis Multi-population coevolutionary algorithm for a green multi-objective flexible job shop scheduling problem with automated guided vehicles and variable processing speed constraints A knowledge-driven many-objective algorithm for energy-efficient distributed heterogeneous hybrid flowshop scheduling with lot-streaming Balancing heterogeneous assembly line with multi-skilled human-robot collaboration via Adaptive cooperative co-evolutionary algorithm A collaborative-learning multi-agent reinforcement learning method for distributed hybrid flow shop scheduling problem
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1