Problem-independent machine learning-enhanced structural topology optimization of complex design domains based on isoparametric elements

IF 4.3 3区 工程技术 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Extreme Mechanics Letters Pub Date : 2024-09-20 DOI:10.1016/j.eml.2024.102237
Linfeng Zhang, Mengcheng Huang, Chang Liu, Zongliang Du, Tianchen Cui, Xu Guo
{"title":"Problem-independent machine learning-enhanced structural topology optimization of complex design domains based on isoparametric elements","authors":"Linfeng Zhang,&nbsp;Mengcheng Huang,&nbsp;Chang Liu,&nbsp;Zongliang Du,&nbsp;Tianchen Cui,&nbsp;Xu Guo","doi":"10.1016/j.eml.2024.102237","DOIUrl":null,"url":null,"abstract":"<div><div>Topology optimization requires dozens or even hundreds of iterations, each requiring a complete finite element analysis (FEA). Significant computation cost limits the application of topology optimization in engineering, especially for high-resolution problems containing complex design domains. To address the issue, a Problem-Independent Machine Learning (PIML) model based on isoparametric elements is proposed. Effectively reducing the computational time of FEA, the proposed model enables efficient topology optimization and extends the solvable problem range to complex design domains. The essential idea is leveraging the substructure method and establishing a mapping from element shapes and material distribution within the substructure to its numerical shape functions through machine learning models. Both sample generation and model training are conducted offline, allowing the trained machine learning model to be directly employed during the topology optimization process. Since the shape function of the substructure is problem-independent, it requires no sample regeneration or modification of the proposed machine learning model when changing the geometry or boundary conditions of the optimization problem. Numerical examples demonstrate that the proposed machine learning model boosts the efficiency of topology optimization by one order of magnitude without parallel techniques.</div></div>","PeriodicalId":56247,"journal":{"name":"Extreme Mechanics Letters","volume":"72 ","pages":"Article 102237"},"PeriodicalIF":4.3000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Extreme Mechanics Letters","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352431624001172","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Topology optimization requires dozens or even hundreds of iterations, each requiring a complete finite element analysis (FEA). Significant computation cost limits the application of topology optimization in engineering, especially for high-resolution problems containing complex design domains. To address the issue, a Problem-Independent Machine Learning (PIML) model based on isoparametric elements is proposed. Effectively reducing the computational time of FEA, the proposed model enables efficient topology optimization and extends the solvable problem range to complex design domains. The essential idea is leveraging the substructure method and establishing a mapping from element shapes and material distribution within the substructure to its numerical shape functions through machine learning models. Both sample generation and model training are conducted offline, allowing the trained machine learning model to be directly employed during the topology optimization process. Since the shape function of the substructure is problem-independent, it requires no sample regeneration or modification of the proposed machine learning model when changing the geometry or boundary conditions of the optimization problem. Numerical examples demonstrate that the proposed machine learning model boosts the efficiency of topology optimization by one order of magnitude without parallel techniques.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于等参数元素的复杂设计域结构拓扑优化--与问题无关的机器学习增强型结构拓扑优化
拓扑优化需要数十次甚至数百次迭代,每次迭代都需要进行完整的有限元分析(FEA)。巨大的计算成本限制了拓扑优化在工程中的应用,尤其是对于包含复杂设计域的高分辨率问题。为了解决这个问题,我们提出了一种基于等参数元素的与问题无关的机器学习(PIML)模型。该模型可有效减少有限元分析的计算时间,实现高效拓扑优化,并将可解决的问题范围扩展到复杂设计领域。其基本思想是利用子结构方法,并通过机器学习模型建立子结构内元素形状和材料分布与其数值形状函数的映射关系。样本生成和模型训练都是离线进行的,这样就可以在拓扑优化过程中直接使用训练好的机器学习模型。由于子结构的形状函数与问题无关,因此在改变优化问题的几何形状或边界条件时,无需重新生成样本或修改所提出的机器学习模型。数值实例表明,在没有并行技术的情况下,所提出的机器学习模型能将拓扑优化的效率提高一个数量级。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Extreme Mechanics Letters
Extreme Mechanics Letters Engineering-Mechanics of Materials
CiteScore
9.20
自引率
4.30%
发文量
179
审稿时长
45 days
期刊介绍: Extreme Mechanics Letters (EML) enables rapid communication of research that highlights the role of mechanics in multi-disciplinary areas across materials science, physics, chemistry, biology, medicine and engineering. Emphasis is on the impact, depth and originality of new concepts, methods and observations at the forefront of applied sciences.
期刊最新文献
Origami electronic membranes as highly shape-morphable mechanical and environmental sensing systems Atomic insights into the ductile–brittle competition of cracks under dissolution A large atomic partition model for materials discovery A model for micro-scale propulsion using flexible rotating flagella Harnessing centrifugal and Euler forces for tunable buckling of a rotating elastica
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1