Direct conversion of esters to imines/enamines and applications to polyester waste upcycling†

IF 7.6 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Chemical Science Pub Date : 2024-09-27 DOI:10.1039/D4SC05160B
Rebecca A. Kehner, Weiheng Huang and Liela Bayeh-Romero
{"title":"Direct conversion of esters to imines/enamines and applications to polyester waste upcycling†","authors":"Rebecca A. Kehner, Weiheng Huang and Liela Bayeh-Romero","doi":"10.1039/D4SC05160B","DOIUrl":null,"url":null,"abstract":"<p >Semi-reductive transformations of esters remain an underdeveloped but valuable class of functional group interconversions. Here, we describe the development of a highly selective method for the interconversion of esters to imines, enamines, aldehydes or amines through an amine-intercepted zirconocene hydride (ZrH)-catalyzed reduction. This protocol employs an inexpensive zirconium catalyst in combination with hydrosilanes and simple unprotected amines. A variety of aryl, benzylic, and aliphatic esters are directly transformed to imines and enamines in up to 99% yield or aldehydes in up to 84% yield, with little-to-no reduction to the corresponding alcohols. The utility of this method for the direct catalytic chemical upcycling of polyester plastic waste is demonstrated through multiple unprecedented depolymerization transformations. Further, the efficient preparation of nitrogen-containing products is also presented, including single-flask multicomponent reactions and the reductive amination of esters.</p>","PeriodicalId":9909,"journal":{"name":"Chemical Science","volume":null,"pages":null},"PeriodicalIF":7.6000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/sc/d4sc05160b?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Science","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/sc/d4sc05160b","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Semi-reductive transformations of esters remain an underdeveloped but valuable class of functional group interconversions. Here, we describe the development of a highly selective method for the interconversion of esters to imines, enamines, aldehydes or amines through an amine-intercepted zirconocene hydride (ZrH)-catalyzed reduction. This protocol employs an inexpensive zirconium catalyst in combination with hydrosilanes and simple unprotected amines. A variety of aryl, benzylic, and aliphatic esters are directly transformed to imines and enamines in up to 99% yield or aldehydes in up to 84% yield, with little-to-no reduction to the corresponding alcohols. The utility of this method for the direct catalytic chemical upcycling of polyester plastic waste is demonstrated through multiple unprecedented depolymerization transformations. Further, the efficient preparation of nitrogen-containing products is also presented, including single-flask multicomponent reactions and the reductive amination of esters.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
酯与亚胺/烯胺的直接转化以及在聚酯废料再循环中的应用
酯的半还原转化仍然是一类尚未充分开发但却非常有价值的官能团相互转化。在此,我们介绍了一种高选择性方法的开发情况,该方法通过胺截留锆氢化物 (ZrH) 催化还原,将酯相互转化为亚胺、烯胺、醛或胺。该方法采用廉价的锆催化剂,并结合氢硅烷和简单的无保护胺。各种芳基、苄基和脂肪族酯可直接转化为亚胺和烯胺,收率高达 99%,或转化为醛,收率高达 84%,几乎不需要还原成相应的醇。通过多种前所未有的解聚转化,证明了这种方法在直接催化聚酯塑料废料化学升级再循环方面的实用性。此外,还介绍了含氮产品的高效制备方法,包括单瓶多组分反应和酯的还原胺化反应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Chemical Science
Chemical Science CHEMISTRY, MULTIDISCIPLINARY-
CiteScore
14.40
自引率
4.80%
发文量
1352
审稿时长
2.1 months
期刊介绍: Chemical Science is a journal that encompasses various disciplines within the chemical sciences. Its scope includes publishing ground-breaking research with significant implications for its respective field, as well as appealing to a wider audience in related areas. To be considered for publication, articles must showcase innovative and original advances in their field of study and be presented in a manner that is understandable to scientists from diverse backgrounds. However, the journal generally does not publish highly specialized research.
期刊最新文献
Chemical Protein Synthesis Combined with Protein Cell Delivery Reveals New Insights on the Maturation Process of SUMO2 Viscoelasticity of globular protein-based biomolecular condensates Biosynthesis of a bacterial meroterpenoid reveals a non-canonical class II terpene synthase Facile Construction of Polyoxometalate-Polymer Hybrid Nanoparticles with pH/Redox Dual-Responsiveness. Ligand-controlled palladium-catalyzed regiodivergent aminocarbonylation of tert-alcohols
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1