Novel irreversibility modeling of non-homogeneous charged gas flow by solving Maxwell–Boltzmann PDEs system: irreversibility analysis for multi-component plasma
{"title":"Novel irreversibility modeling of non-homogeneous charged gas flow by solving Maxwell–Boltzmann PDEs system: irreversibility analysis for multi-component plasma","authors":"Taha Z. Abdel Wahid, Zaki Mrzog Alaofi","doi":"10.1515/jnet-2024-0055","DOIUrl":null,"url":null,"abstract":"A novel modeling and new irreversibility analysis of non-homogeneous charged gas flow is presented as an extension and further development of our previous article [J. Non-equilibrium. Thermodyne. 49 (2024), 1–21]. We study the non-equilibrium irreversible thermodynamics (NIT) properties of the exact solution to the dilute non-homogeneously charged gas problem with unsteady Rayleigh flow. In contrast to previous research, the charged gas is non-homogeneous under the influence of induced electromagnetic forces, the flat plate moving damping with time, and the effect of positive ions is considered, leading to significant advancements in understanding natural plasma dynamics. We are solving eight non-homogeneous partial differential equations (PDE). We used a Laplace transformation technique and small parameters methods. To the best of our knowledge, as two new scientific achievements, we introduced a new mathematical model for a mixture of charged gas to calculate the thermodynamic forces, kinetic coefficients, and fluxes variables, see Appendices. Second, we present a fantastic new technique by a flowchart to identify the equilibrium time of multi-component plasma step-by-step using the velocity distribution function (VDF). We indicate that electrons, which are faster lighter components, reach equilibrium faster than slower heavier components. A standard laboratory argon plasma model is used to apply the results.","PeriodicalId":16428,"journal":{"name":"Journal of Non-Equilibrium Thermodynamics","volume":"67 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Non-Equilibrium Thermodynamics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/jnet-2024-0055","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
A novel modeling and new irreversibility analysis of non-homogeneous charged gas flow is presented as an extension and further development of our previous article [J. Non-equilibrium. Thermodyne. 49 (2024), 1–21]. We study the non-equilibrium irreversible thermodynamics (NIT) properties of the exact solution to the dilute non-homogeneously charged gas problem with unsteady Rayleigh flow. In contrast to previous research, the charged gas is non-homogeneous under the influence of induced electromagnetic forces, the flat plate moving damping with time, and the effect of positive ions is considered, leading to significant advancements in understanding natural plasma dynamics. We are solving eight non-homogeneous partial differential equations (PDE). We used a Laplace transformation technique and small parameters methods. To the best of our knowledge, as two new scientific achievements, we introduced a new mathematical model for a mixture of charged gas to calculate the thermodynamic forces, kinetic coefficients, and fluxes variables, see Appendices. Second, we present a fantastic new technique by a flowchart to identify the equilibrium time of multi-component plasma step-by-step using the velocity distribution function (VDF). We indicate that electrons, which are faster lighter components, reach equilibrium faster than slower heavier components. A standard laboratory argon plasma model is used to apply the results.
期刊介绍:
The Journal of Non-Equilibrium Thermodynamics serves as an international publication organ for new ideas, insights and results on non-equilibrium phenomena in science, engineering and related natural systems. The central aim of the journal is to provide a bridge between science and engineering and to promote scientific exchange on a) newly observed non-equilibrium phenomena, b) analytic or numeric modeling for their interpretation, c) vanguard methods to describe non-equilibrium phenomena.
Contributions should – among others – present novel approaches to analyzing, modeling and optimizing processes of engineering relevance such as transport processes of mass, momentum and energy, separation of fluid phases, reproduction of living cells, or energy conversion. The journal is particularly interested in contributions which add to the basic understanding of non-equilibrium phenomena in science and engineering, with systems of interest ranging from the macro- to the nano-level.
The Journal of Non-Equilibrium Thermodynamics has recently expanded its scope to place new emphasis on theoretical and experimental investigations of non-equilibrium phenomena in thermophysical, chemical, biochemical and abstract model systems of engineering relevance. We are therefore pleased to invite submissions which present newly observed non-equilibrium phenomena, analytic or fuzzy models for their interpretation, or new methods for their description.