Designing water resistant high entropy oxide materials

IF 14.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Nature Communications Pub Date : 2024-09-27 DOI:10.1038/s41467-024-52531-y
Mengyuan Zhang, Ying Gao, Chengmin Xie, Xiaolan Duan, Xiaoyan Lu, Kongliang Luo, Jian Ye, Xiaopeng Wang, Xinhua Gao, Qiang Niu, Pengfei Zhang, Sheng Dai
{"title":"Designing water resistant high entropy oxide materials","authors":"Mengyuan Zhang, Ying Gao, Chengmin Xie, Xiaolan Duan, Xiaoyan Lu, Kongliang Luo, Jian Ye, Xiaopeng Wang, Xinhua Gao, Qiang Niu, Pengfei Zhang, Sheng Dai","doi":"10.1038/s41467-024-52531-y","DOIUrl":null,"url":null,"abstract":"<p>The ubiquitous presence of moisture usually shows adverse effects on industrial catalysis. Herein, a concept of engineering entropy to design water-resistant oxide catalysts is proposed. The C<sub>3</sub>H<sub>6</sub> oxidation by spinel ACr<sub>2</sub>O<sub>4</sub> (A=Ni, Mg, Cu, Zn, Co) catalysts is selected as a model. Through DFT calculation, the adsorption energy of C<sub>3</sub>H<sub>6</sub>, the dissociation energy of molecular H<sub>2</sub>O on the oxide surface, and the formation energy of oxygen vacancy all suggest better performance induced by higher configurational entropy. Indeed, (Ni<sub>0.2</sub>Mg<sub>0.2</sub>Cu<sub>0.2</sub>Zn<sub>0.2</sub>Co<sub>0.2</sub>)Cr<sub>2</sub>O<sub>4</sub> experimentally show excellent water resistance (&gt;100 h) in C<sub>3</sub>H<sub>6</sub> oxidation, while in sharp contrast binary oxides (e.g., NiCr<sub>2</sub>O<sub>4</sub>, CoCr<sub>2</sub>O<sub>4</sub>) are deactivated in 20 h. H<sub>2</sub>O-TPD, in-situ Raman, and in-situ FTIR all confirm the low H<sub>2</sub>O adsorption energy and strong hydrothermal stability of high entropy oxide, which is attributed to their lower Gibbs free energy. This work may inspire the rational design of water-resistant catalysts.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":null,"pages":null},"PeriodicalIF":14.7000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-024-52531-y","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The ubiquitous presence of moisture usually shows adverse effects on industrial catalysis. Herein, a concept of engineering entropy to design water-resistant oxide catalysts is proposed. The C3H6 oxidation by spinel ACr2O4 (A=Ni, Mg, Cu, Zn, Co) catalysts is selected as a model. Through DFT calculation, the adsorption energy of C3H6, the dissociation energy of molecular H2O on the oxide surface, and the formation energy of oxygen vacancy all suggest better performance induced by higher configurational entropy. Indeed, (Ni0.2Mg0.2Cu0.2Zn0.2Co0.2)Cr2O4 experimentally show excellent water resistance (>100 h) in C3H6 oxidation, while in sharp contrast binary oxides (e.g., NiCr2O4, CoCr2O4) are deactivated in 20 h. H2O-TPD, in-situ Raman, and in-situ FTIR all confirm the low H2O adsorption energy and strong hydrothermal stability of high entropy oxide, which is attributed to their lower Gibbs free energy. This work may inspire the rational design of water-resistant catalysts.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
设计防水高熵氧化物材料
无处不在的湿气通常会对工业催化产生不利影响。本文提出了一种设计防水氧化物催化剂的工程熵概念。以尖晶石 ACr2O4(A=Ni、Mg、Cu、Zn、Co)催化剂氧化 C3H6 为模型。通过 DFT 计算,C3H6 的吸附能、分子 H2O 在氧化物表面的解离能以及氧空位的形成能都表明,较高的构型熵会诱导催化剂发挥更好的性能。事实上,(Ni0.2Mg0.2Cu0.2Zn0.2Co0.2)Cr2O4 在 C3H6 氧化实验中表现出卓越的耐水性(100 小时),而与此形成鲜明对比的是二元氧化物(如H2O-TPD、原位拉曼和原位傅立叶变换红外光谱都证实了高熵氧化物具有较低的 H2O 吸附能和较强的水热稳定性,这归功于它们较低的吉布斯自由能。这项工作可能会对合理设计防水催化剂有所启发。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
期刊最新文献
The urotensin II receptor triggers an early meningeal response and a delayed macrophage-dependent vasospasm after subarachnoid hemorrhage in male mice Plastic pollution in agricultural landscapes: an overlooked threat to pollination, biocontrol and food security Experience of Euclidean geometry sculpts the development and dynamics of rodent hippocampal sequential cell assemblies Structurally-colored adhesives for sensitive, high-resolution, and non-invasive adhesion self-monitoring Evolutionary origin and population diversity of a cryptic hybrid pathogen
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1