Paul Oftedahl, Nawsher J. Parvez, Zhen Zhang, Yang Sun, Vladimir Antropov, John Q. Xiao, Julia V. Zaikina
{"title":"Venturing into Unexplored Phase Space: Synthesis, Structure, and Properties of MgCo3B2 Featuring a Rumpled Kagomé Network","authors":"Paul Oftedahl, Nawsher J. Parvez, Zhen Zhang, Yang Sun, Vladimir Antropov, John Q. Xiao, Julia V. Zaikina","doi":"10.1021/acs.chemmater.4c01999","DOIUrl":null,"url":null,"abstract":"MgCo<sub>3</sub>B<sub>2</sub>, a novel ternary boride in a previously unexplored phase space, was synthesized using the hydride route. In situ powder X-ray diffraction and DFT calculations aided in the discovery of this compound, whose structure was then determined by single-crystal X-ray diffraction. Like the closely related CeCo<sub>3</sub>B<sub>2</sub>, MgCo<sub>3</sub>B<sub>2</sub> crystallizes in centrosymmetric space group <i>P</i>6/<i>mmm</i> (<i>a</i> = 4.883(2) Å, <i>c</i> = 2.926(2) Å at 210 K, <i>Z</i> = 1). Unlike CeCo<sub>3</sub>B<sub>2</sub>, however, it adopts a disordered structure that features a rumpled Kagomé network of Co atoms, and Mg atoms fill the channels of a Co–B framework. Although the structural disorder leads to motifs that are similar to those observed in MgNi<sub>3</sub>B<sub>2</sub> and other related ternary borides, no evidence of an ordered superstructure was found by single-crystal X-ray diffraction or high-resolution powder X-ray diffraction. In the case of CeCo<sub>3</sub>B<sub>2</sub>, boron atoms occupy the center of regular Co<sub>6</sub> trigonal prisms; in MgCo<sub>3</sub>B<sub>2</sub>, boron atoms are shifted from the center of the prism to form B–B dimers with roughly the same length as those found in MgNi<sub>3</sub>B<sub>2</sub>. Magnetic susceptibility data exhibit an unusual temperature dependence that cannot be convincingly modeled by the modified Curie–Weiss equation, consistent with DFT calculations predicting a nonmagnetic ground state. Intrinsic susceptibility at 300 K is 1.42 × 10<sup>–3</sup> emu/mol Oe, which is comparable to that of paramagnetic YCo<sub>3</sub>B<sub>2</sub> and CeCo<sub>3</sub>B<sub>2</sub> with a similar structure and composition. This study showcases the efficacy of combining several methodologies to discover new solids in unexplored phase spaces. This approach includes in situ PXRD data to monitor reactions of precursors upon heating, a diffusion-enhanced synthesis method, and DFT assessment of compound stability.","PeriodicalId":7,"journal":{"name":"ACS Applied Polymer Materials","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Polymer Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.chemmater.4c01999","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
MgCo3B2, a novel ternary boride in a previously unexplored phase space, was synthesized using the hydride route. In situ powder X-ray diffraction and DFT calculations aided in the discovery of this compound, whose structure was then determined by single-crystal X-ray diffraction. Like the closely related CeCo3B2, MgCo3B2 crystallizes in centrosymmetric space group P6/mmm (a = 4.883(2) Å, c = 2.926(2) Å at 210 K, Z = 1). Unlike CeCo3B2, however, it adopts a disordered structure that features a rumpled Kagomé network of Co atoms, and Mg atoms fill the channels of a Co–B framework. Although the structural disorder leads to motifs that are similar to those observed in MgNi3B2 and other related ternary borides, no evidence of an ordered superstructure was found by single-crystal X-ray diffraction or high-resolution powder X-ray diffraction. In the case of CeCo3B2, boron atoms occupy the center of regular Co6 trigonal prisms; in MgCo3B2, boron atoms are shifted from the center of the prism to form B–B dimers with roughly the same length as those found in MgNi3B2. Magnetic susceptibility data exhibit an unusual temperature dependence that cannot be convincingly modeled by the modified Curie–Weiss equation, consistent with DFT calculations predicting a nonmagnetic ground state. Intrinsic susceptibility at 300 K is 1.42 × 10–3 emu/mol Oe, which is comparable to that of paramagnetic YCo3B2 and CeCo3B2 with a similar structure and composition. This study showcases the efficacy of combining several methodologies to discover new solids in unexplored phase spaces. This approach includes in situ PXRD data to monitor reactions of precursors upon heating, a diffusion-enhanced synthesis method, and DFT assessment of compound stability.
期刊介绍:
ACS Applied Polymer Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics, and biology relevant to applications of polymers.
The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates fundamental knowledge in the areas of materials, engineering, physics, bioscience, polymer science and chemistry into important polymer applications. The journal is specifically interested in work that addresses relationships among structure, processing, morphology, chemistry, properties, and function as well as work that provide insights into mechanisms critical to the performance of the polymer for applications.