Mn–Ce Symbiosis: Nanozymes with Multiple Active Sites Facilitate Scavenging of Reactive Oxygen Species (ROS) Based on Electron Transfer and Confinement Anchoring

IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Angewandte Chemie International Edition Pub Date : 2024-09-26 DOI:10.1002/anie.202416686
Juan Zhang, Zhihua Wang, Xingen Lin, Xiaoping Gao, Qiuping Wang, Rui Huang, Yaner Ruan, Haonan Xu, Lin Tian, Chen Ling, Ran Shi, Suowen Xu, Kong Chen, Yuen Wu
{"title":"Mn–Ce Symbiosis: Nanozymes with Multiple Active Sites Facilitate Scavenging of Reactive Oxygen Species (ROS) Based on Electron Transfer and Confinement Anchoring","authors":"Juan Zhang, Zhihua Wang, Xingen Lin, Xiaoping Gao, Qiuping Wang, Rui Huang, Yaner Ruan, Haonan Xu, Lin Tian, Chen Ling, Ran Shi, Suowen Xu, Kong Chen, Yuen Wu","doi":"10.1002/anie.202416686","DOIUrl":null,"url":null,"abstract":"Regulating appropriate valence states of metal active centers, such as Ce3+/Ce4+ and Mn3+/Mn2+, as well as surface vacancy defects, is crucial for enhancing the catalytic activity of cerium-based and manganese-based nanozymes. Drawing inspiration from the efficient substance exchange in rhizobia-colonized root cells of legumes, we developed a symbiosis nanozyme system with rhizobia-like nano CeOx clusters robustly anchored onto root-like Mn3O4 nanosupports (CeOx/Mn3O4). The process of \"substance exchange\" between Ce and Mn atoms—reminiscent of electron transfer—not only fine-tunes the metal active sites to achieve optimal Ce3+/Ce4+ and Mn3+/Mn2+ ratios but also enhances the vacancy ratio through interface defect engineering. Additionally, the confinement anchoring of CeOx on Mn3O4 ensures efficient electron transfer in catalytic reactions. The final CeOx/Mn3O4 nanozyme demonstrates potent catalase-like (CAT- like) and superoxide dismutase-like (SOD-like) activities, excelling in both chemical settings and cellular environments with high reactive oxygen species (ROS) levels. This research not only unveils a novel material adept at effectively eliminating ROS but also presents an innovative approach for amplifying nanozyme efficacy.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"272 1","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202416686","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Regulating appropriate valence states of metal active centers, such as Ce3+/Ce4+ and Mn3+/Mn2+, as well as surface vacancy defects, is crucial for enhancing the catalytic activity of cerium-based and manganese-based nanozymes. Drawing inspiration from the efficient substance exchange in rhizobia-colonized root cells of legumes, we developed a symbiosis nanozyme system with rhizobia-like nano CeOx clusters robustly anchored onto root-like Mn3O4 nanosupports (CeOx/Mn3O4). The process of "substance exchange" between Ce and Mn atoms—reminiscent of electron transfer—not only fine-tunes the metal active sites to achieve optimal Ce3+/Ce4+ and Mn3+/Mn2+ ratios but also enhances the vacancy ratio through interface defect engineering. Additionally, the confinement anchoring of CeOx on Mn3O4 ensures efficient electron transfer in catalytic reactions. The final CeOx/Mn3O4 nanozyme demonstrates potent catalase-like (CAT- like) and superoxide dismutase-like (SOD-like) activities, excelling in both chemical settings and cellular environments with high reactive oxygen species (ROS) levels. This research not only unveils a novel material adept at effectively eliminating ROS but also presents an innovative approach for amplifying nanozyme efficacy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
锰铈共生:具有多个活性位点的纳米酶基于电子传递和禁锢锚定促进活性氧清除
调节 Ce3+/Ce4+ 和 Mn3+/Mn2+ 等金属活性中心的适当价态以及表面空位缺陷,对于提高铈基和锰基纳米酶的催化活性至关重要。我们从豆科植物根瘤菌定殖根部细胞的高效物质交换中汲取灵感,开发了一种共生纳米酶系统,该系统将类似根瘤菌的纳米 CeOx 簇牢固地锚定在类似根部的 Mn3O4 纳米支撑物(CeOx/Mn3O4)上。Ce 原子和 Mn 原子间的 "物质交换 "过程让人联想到电子转移,它不仅对金属活性位点进行了微调,以达到最佳的 Ce3+/Ce4+ 和 Mn3+/Mn2+ 比率,还通过界面缺陷工程提高了空位比率。此外,CeOx 在 Mn3O4 上的约束锚定还能确保催化反应中的高效电子转移。最终的 CeOx/Mn3O4 纳米酶具有强大的类似催化酶(CAT-like)和类似超氧化物歧化酶(SOD-like)的活性,在化学环境和活性氧(ROS)水平较高的细胞环境中均表现出色。这项研究不仅揭示了一种能够有效消除 ROS 的新型材料,还提出了一种放大纳米酶功效的创新方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
期刊最新文献
Rechargeable lithium-hydrogen gas hybrid batteries Regioregular Poly(p-phenylene iminoborane): A Strictly Alternating BN-Isostere of Poly(p-phenylene vinylene) with Stimuli-Responsive Behavior Fighting Antimicrobial Resistance: Innovative Drugs in Antibacterial Research Unveiling the Structure-Fluorogenic Property Relationship of Seoul-Fluor-Derived Bioorthogonal Tetrazine Probes Quantitative Formation of Octa-substituted Cyclobutanes by the [2+2] Photocycloaddition of Stiff-stilbenes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1