Surface Coloring and Plasmonic Information Encryption at 50000 dpi Enabled by Direct Femtosecond Laser Printing

IF 11.3 1区 化学 Q1 CHEMISTRY, PHYSICAL ACS Catalysis Pub Date : 2024-09-27 DOI:10.1021/acs.nanolett.4c03576
Vasily Lapidas, Artem Cherepakhin, Dmitriy Storozhenko, Evgeny L. Gurevich, Alexey Zhizhchenko, Aleksandr A. Kuchmizhak
{"title":"Surface Coloring and Plasmonic Information Encryption at 50000 dpi Enabled by Direct Femtosecond Laser Printing","authors":"Vasily Lapidas, Artem Cherepakhin, Dmitriy Storozhenko, Evgeny L. Gurevich, Alexey Zhizhchenko, Aleksandr A. Kuchmizhak","doi":"10.1021/acs.nanolett.4c03576","DOIUrl":null,"url":null,"abstract":"Femtosecond (fs) laser pulses drive matter into a highly nonequilibrium state, allowing precise sculpturing of irradiated surface sites with sophisticated nanomorphologies. Here, we used fs-laser patterning to create diverse plasmonic morphologies on the top Au layer of the metal–insulator–metal sandwich. Mutual action of laser-driven thermomechanical effects and ultrafast solid-to-liquid transition allows control of the morphology resulting in pronounced surface reflectivity modulation, i.e., in a structural color effect. This enables template-free high-resolution color printing at a superior lateral resolution up to 50000 dots per inch and facile tunability of the color tone and saturation. Moreover, precise control over the orientation of the printed nanostructures within subwavelength lattices allows modulation of their local plasmonic response encrypting the optical information within the colorful images. The hidden information can be unveiled using a facile cross-polarized optical visualization scheme, rendering the proposed method with extra modalities combining high resolution information encryption, coloring, and security labeling.","PeriodicalId":9,"journal":{"name":"ACS Catalysis ","volume":null,"pages":null},"PeriodicalIF":11.3000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Catalysis ","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.4c03576","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Femtosecond (fs) laser pulses drive matter into a highly nonequilibrium state, allowing precise sculpturing of irradiated surface sites with sophisticated nanomorphologies. Here, we used fs-laser patterning to create diverse plasmonic morphologies on the top Au layer of the metal–insulator–metal sandwich. Mutual action of laser-driven thermomechanical effects and ultrafast solid-to-liquid transition allows control of the morphology resulting in pronounced surface reflectivity modulation, i.e., in a structural color effect. This enables template-free high-resolution color printing at a superior lateral resolution up to 50000 dots per inch and facile tunability of the color tone and saturation. Moreover, precise control over the orientation of the printed nanostructures within subwavelength lattices allows modulation of their local plasmonic response encrypting the optical information within the colorful images. The hidden information can be unveiled using a facile cross-polarized optical visualization scheme, rendering the proposed method with extra modalities combining high resolution information encryption, coloring, and security labeling.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过直接飞秒激光打印实现 50000 dpi 的表面着色和等离子信息加密
飞秒(fs)激光脉冲可使物质进入高度非平衡状态,从而精确地雕刻出具有复杂纳米形态的照射表面。在这里,我们利用 fs 激光图案化技术在金属-绝缘体-金属夹层的顶部金层上创建了多种质子形态。激光驱动的热机械效应和超快固液转换的相互影响可以控制形态,从而产生明显的表面反射率调制,即结构色彩效应。这样就能实现无模板高分辨率彩色打印,横向分辨率高达 50000 点/英寸,并能方便地调节色调和饱和度。此外,通过精确控制亚波长晶格内印刷纳米结构的取向,可以调制其局部等离子响应,从而加密彩色图像中的光学信息。利用简单的交叉偏振光学可视化方案就能揭示隐藏的信息,从而使所提出的方法具有结合高分辨率信息加密、着色和安全标签的额外模式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Catalysis
ACS Catalysis CHEMISTRY, PHYSICAL-
CiteScore
20.80
自引率
6.20%
发文量
1253
审稿时长
1.5 months
期刊介绍: ACS Catalysis is an esteemed journal that publishes original research in the fields of heterogeneous catalysis, molecular catalysis, and biocatalysis. It offers broad coverage across diverse areas such as life sciences, organometallics and synthesis, photochemistry and electrochemistry, drug discovery and synthesis, materials science, environmental protection, polymer discovery and synthesis, and energy and fuels. The scope of the journal is to showcase innovative work in various aspects of catalysis. This includes new reactions and novel synthetic approaches utilizing known catalysts, the discovery or modification of new catalysts, elucidation of catalytic mechanisms through cutting-edge investigations, practical enhancements of existing processes, as well as conceptual advances in the field. Contributions to ACS Catalysis can encompass both experimental and theoretical research focused on catalytic molecules, macromolecules, and materials that exhibit catalytic turnover.
期刊最新文献
Dendrite-free zinc metal anode for long-life zinc-ion batteries enabled by an artificial hydrophobic-zincophilic coating. Bioderived carbon aerogels loaded with g-C3N4 and their high Efficacy removing volatile organic compounds (VOCs). Crosslinking modification of starch improves the structural stability of hard carbon anodes for high-capacity sodium storage. Interfacial design of pyrene-based covalent organic framework for overall photocatalytic H2O2 synthesis in water. LaCo0.95Mo0.05O3/CeO2 composite can promote the effective activation of peroxymonosulfate via Co3+/Co2+ cycle and realize the efficient degradation of hydroxychloroquine sulfate.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1