Vasily Lapidas, Artem Cherepakhin, Dmitriy Storozhenko, Evgeny L. Gurevich, Alexey Zhizhchenko, Aleksandr A. Kuchmizhak
{"title":"Surface Coloring and Plasmonic Information Encryption at 50000 dpi Enabled by Direct Femtosecond Laser Printing","authors":"Vasily Lapidas, Artem Cherepakhin, Dmitriy Storozhenko, Evgeny L. Gurevich, Alexey Zhizhchenko, Aleksandr A. Kuchmizhak","doi":"10.1021/acs.nanolett.4c03576","DOIUrl":null,"url":null,"abstract":"Femtosecond (fs) laser pulses drive matter into a highly nonequilibrium state, allowing precise sculpturing of irradiated surface sites with sophisticated nanomorphologies. Here, we used fs-laser patterning to create diverse plasmonic morphologies on the top Au layer of the metal–insulator–metal sandwich. Mutual action of laser-driven thermomechanical effects and ultrafast solid-to-liquid transition allows control of the morphology resulting in pronounced surface reflectivity modulation, i.e., in a structural color effect. This enables template-free high-resolution color printing at a superior lateral resolution up to 50000 dots per inch and facile tunability of the color tone and saturation. Moreover, precise control over the orientation of the printed nanostructures within subwavelength lattices allows modulation of their local plasmonic response encrypting the optical information within the colorful images. The hidden information can be unveiled using a facile cross-polarized optical visualization scheme, rendering the proposed method with extra modalities combining high resolution information encryption, coloring, and security labeling.","PeriodicalId":9,"journal":{"name":"ACS Catalysis ","volume":null,"pages":null},"PeriodicalIF":11.3000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Catalysis ","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.4c03576","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Femtosecond (fs) laser pulses drive matter into a highly nonequilibrium state, allowing precise sculpturing of irradiated surface sites with sophisticated nanomorphologies. Here, we used fs-laser patterning to create diverse plasmonic morphologies on the top Au layer of the metal–insulator–metal sandwich. Mutual action of laser-driven thermomechanical effects and ultrafast solid-to-liquid transition allows control of the morphology resulting in pronounced surface reflectivity modulation, i.e., in a structural color effect. This enables template-free high-resolution color printing at a superior lateral resolution up to 50000 dots per inch and facile tunability of the color tone and saturation. Moreover, precise control over the orientation of the printed nanostructures within subwavelength lattices allows modulation of their local plasmonic response encrypting the optical information within the colorful images. The hidden information can be unveiled using a facile cross-polarized optical visualization scheme, rendering the proposed method with extra modalities combining high resolution information encryption, coloring, and security labeling.
期刊介绍:
ACS Catalysis is an esteemed journal that publishes original research in the fields of heterogeneous catalysis, molecular catalysis, and biocatalysis. It offers broad coverage across diverse areas such as life sciences, organometallics and synthesis, photochemistry and electrochemistry, drug discovery and synthesis, materials science, environmental protection, polymer discovery and synthesis, and energy and fuels.
The scope of the journal is to showcase innovative work in various aspects of catalysis. This includes new reactions and novel synthetic approaches utilizing known catalysts, the discovery or modification of new catalysts, elucidation of catalytic mechanisms through cutting-edge investigations, practical enhancements of existing processes, as well as conceptual advances in the field. Contributions to ACS Catalysis can encompass both experimental and theoretical research focused on catalytic molecules, macromolecules, and materials that exhibit catalytic turnover.