Yixin Zhao , Yuan Tian , Xuan Zhang , Meilin Xie , Wei Hao , Xiuqin Su
{"title":"Analysis of coded dual-repetition rate single-photon LIDAR","authors":"Yixin Zhao , Yuan Tian , Xuan Zhang , Meilin Xie , Wei Hao , Xiuqin Su","doi":"10.1016/j.optcom.2024.131148","DOIUrl":null,"url":null,"abstract":"<div><div>Single-photon Light Detection and Ranging (Lidar) has been widely used for long-range ranging due to its single-photon sensitivity and picosecond timing resolution. However, it is still a great challenge to range long-range targets with high accuracy in a short time regardless of whether target is static or dynamic. It is because that the existing long-range single-photon ranging techniques both have non-negligible drawbacks: Coded Signal Ranging (CSSR) with long computation time and Multi-Repetition Rate Ranging (MRRSR) technology with low accuracy. Therefore, the coded multi-repetition rate single-photon ranging (CMSPR) method is proposed to achieve high-accuracy ranging with a short computation time. And coded dual-repetition rate single-photon ranging (CDSPR) system with neighboring coding lengths is proposed to simplify the solution process, which can directly have analytical solutions. Besides, the data centralization method (DCM) based on the coding technique is proposed to further enhance the performance of CDSPR, which is a data pre-processing method based on the characteristics of CDSPR. Results show that CDSPR with DCM can provide a higher ranging error with less computation time.</div></div>","PeriodicalId":19586,"journal":{"name":"Optics Communications","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics Communications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S003040182400885X","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Single-photon Light Detection and Ranging (Lidar) has been widely used for long-range ranging due to its single-photon sensitivity and picosecond timing resolution. However, it is still a great challenge to range long-range targets with high accuracy in a short time regardless of whether target is static or dynamic. It is because that the existing long-range single-photon ranging techniques both have non-negligible drawbacks: Coded Signal Ranging (CSSR) with long computation time and Multi-Repetition Rate Ranging (MRRSR) technology with low accuracy. Therefore, the coded multi-repetition rate single-photon ranging (CMSPR) method is proposed to achieve high-accuracy ranging with a short computation time. And coded dual-repetition rate single-photon ranging (CDSPR) system with neighboring coding lengths is proposed to simplify the solution process, which can directly have analytical solutions. Besides, the data centralization method (DCM) based on the coding technique is proposed to further enhance the performance of CDSPR, which is a data pre-processing method based on the characteristics of CDSPR. Results show that CDSPR with DCM can provide a higher ranging error with less computation time.
期刊介绍:
Optics Communications invites original and timely contributions containing new results in various fields of optics and photonics. The journal considers theoretical and experimental research in areas ranging from the fundamental properties of light to technological applications. Topics covered include classical and quantum optics, optical physics and light-matter interactions, lasers, imaging, guided-wave optics and optical information processing. Manuscripts should offer clear evidence of novelty and significance. Papers concentrating on mathematical and computational issues, with limited connection to optics, are not suitable for publication in the Journal. Similarly, small technical advances, or papers concerned only with engineering applications or issues of materials science fall outside the journal scope.