A hybrid BOA-SVR approach for predicting aerobic organic and nitrogen removal in a gas-liquid-solid circulating fluidized bed bioreactor

IF 3 Q2 ENGINEERING, CHEMICAL Digital Chemical Engineering Pub Date : 2024-09-24 DOI:10.1016/j.dche.2024.100188
Shaikh Abdur Razzak , Nahid Sultana , S.M. Zakir Hossain , Muhammad Muhitur Rahman , Yue Yuan , Mohammad Mozahar Hossain , Jesse Zhu
{"title":"A hybrid BOA-SVR approach for predicting aerobic organic and nitrogen removal in a gas-liquid-solid circulating fluidized bed bioreactor","authors":"Shaikh Abdur Razzak ,&nbsp;Nahid Sultana ,&nbsp;S.M. Zakir Hossain ,&nbsp;Muhammad Muhitur Rahman ,&nbsp;Yue Yuan ,&nbsp;Mohammad Mozahar Hossain ,&nbsp;Jesse Zhu","doi":"10.1016/j.dche.2024.100188","DOIUrl":null,"url":null,"abstract":"<div><div>This study introduces the hybrid of the Bayesian optimization algorithm and support vector regression (BOA-SVR) models to predict the removal of aerobic organic (total chemical oxygen demand, COD) and nitrogen compounds such as total Kjeldahl Nitrogen (TKN), ammonium nitrogen (NH<sub>4</sub>-N), and nitrate nitrogen (NO<sub>3</sub>-N) from municipal wastewater in a gas-liquid-solid circulating fluidized bed (GLSCFB) bioreactor. GLSCFB bioreactors treat wastewater by removing nutrients biologically. The downer of a GLSCFB bioreactor provided experimental data on TKN, NH<sub>4</sub>-N, NO<sub>3</sub>-N, and TCOD removal. The hybrid optimal intelligence algorithm (BOA-SVR) has improved model accuracy across multiple domains by combining BOA and SVR. The coefficient of determination (R<sup>2</sup>), residual, mean absolute error (MAE), root mean square error (RMSE), and fractional bias (FB) were used to analyze BOA-SVR model performance. The models match experimental data from four operational stages well, with R<sup>2</sup> or adj R<sup>2</sup> values above 0.99 for all responses. The model's accuracy was confirmed by relative deviations and residual plots showing dispersion around the zero-reference line. The BOA-SVR model consistently predicted dependent variables with low RMSE and MAE values (≤ 2.24 and 2.21, respectively) and near-zero FB. Computing efficiency was shown by optimizing TCOD, TKN, NH4-N, and NO3-N models in 70.61, 72.89, 74.37, and 54.07 s. A rigorous test on unseen data with different noise levels confirmed the model's stability. Furthermore, BOA-SVR performs better than traditional multiple linear regression (MLR). Overall, the BOA-SVR model predicts biological nutrient removal in municipal wastewater utilizing a GLSCFB bioreactor quickly, correctly, and efficiently, reducing experimental stress and resource use.</div></div>","PeriodicalId":72815,"journal":{"name":"Digital Chemical Engineering","volume":"13 ","pages":"Article 100188"},"PeriodicalIF":3.0000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital Chemical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772508124000504","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This study introduces the hybrid of the Bayesian optimization algorithm and support vector regression (BOA-SVR) models to predict the removal of aerobic organic (total chemical oxygen demand, COD) and nitrogen compounds such as total Kjeldahl Nitrogen (TKN), ammonium nitrogen (NH4-N), and nitrate nitrogen (NO3-N) from municipal wastewater in a gas-liquid-solid circulating fluidized bed (GLSCFB) bioreactor. GLSCFB bioreactors treat wastewater by removing nutrients biologically. The downer of a GLSCFB bioreactor provided experimental data on TKN, NH4-N, NO3-N, and TCOD removal. The hybrid optimal intelligence algorithm (BOA-SVR) has improved model accuracy across multiple domains by combining BOA and SVR. The coefficient of determination (R2), residual, mean absolute error (MAE), root mean square error (RMSE), and fractional bias (FB) were used to analyze BOA-SVR model performance. The models match experimental data from four operational stages well, with R2 or adj R2 values above 0.99 for all responses. The model's accuracy was confirmed by relative deviations and residual plots showing dispersion around the zero-reference line. The BOA-SVR model consistently predicted dependent variables with low RMSE and MAE values (≤ 2.24 and 2.21, respectively) and near-zero FB. Computing efficiency was shown by optimizing TCOD, TKN, NH4-N, and NO3-N models in 70.61, 72.89, 74.37, and 54.07 s. A rigorous test on unseen data with different noise levels confirmed the model's stability. Furthermore, BOA-SVR performs better than traditional multiple linear regression (MLR). Overall, the BOA-SVR model predicts biological nutrient removal in municipal wastewater utilizing a GLSCFB bioreactor quickly, correctly, and efficiently, reducing experimental stress and resource use.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
预测气液固循环流化床生物反应器中好氧有机物和氮去除情况的 BOA-SVR 混合方法
本研究介绍了贝叶斯优化算法和支持向量回归(BOA-SVR)混合模型,用于预测气液固循环流化床(GLSCFB)生物反应器去除城市污水中好氧有机物(总化学需氧量,COD)和氮化合物(如凯氏氮(TKN)、铵态氮(NH4-N)和硝态氮(NO3-N)的情况。GLSCFB 生物反应器通过生物方式去除营养物质来处理废水。GLSCFB 生物反应器的沉降器提供了去除 TKN、NH4-N、NO3-N 和 TCOD 的实验数据。混合优化智能算法(BOA-SVR)通过结合 BOA 和 SVR,提高了模型在多个领域的准确性。确定系数 (R2)、残差、平均绝对误差 (MAE)、均方根误差 (RMSE) 和分数偏差 (FB) 被用来分析 BOA-SVR 模型的性能。模型与四个运行阶段的实验数据匹配良好,所有响应的 R2 或 adj R2 值均高于 0.99。相对偏差和残差图显示了零参考线附近的离散性,从而证实了模型的准确性。BOA-SVR 模型以较低的 RMSE 和 MAE 值(分别≤ 2.24 和 2.21)和接近零的 FB 值持续预测因变量。通过优化 TCOD、TKN、NH4-N 和 NO3-N 模型,计算效率分别为 70.61、72.89、74.37 和 54.07 s。此外,BOA-SVR 的表现优于传统的多元线性回归(MLR)。总之,BOA-SVR 模型可以快速、正确、高效地预测利用 GLSCFB 生物反应器的城市污水生物营养物去除率,从而减少实验压力和资源使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.10
自引率
0.00%
发文量
0
期刊最新文献
The trust region filter strategy: Survey of a rigorous approach for optimization with surrogate models Multi-agent distributed control of integrated process networks using an adaptive community detection approach Industrial data-driven machine learning soft sensing for optimal operation of etching tools Process integration technique for targeting carbon credit price subsidy Robust simulation and technical evaluation of large-scale gas oil hydrocracking process via extended water-energy-product (E-WEP) analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1