{"title":"The matrix pencil as a tunable filter","authors":"S.N. Fricke , B.J. Balcom , D.C. Kaseman , M.P. Augustine","doi":"10.1016/j.jmr.2024.107780","DOIUrl":null,"url":null,"abstract":"<div><div>Despite inherent sensitivity constraints, nuclear magnetic resonance (NMR) plays an indispensable role in probing molecular structures and dynamics across scientific disciplines. Remarkably, while extensive efforts have targeted instrumental and experimental sensitivity improvements, comparatively little focus has been dedicated to sensitivity enhancement through signal analysis. Amidst this present gap, the matrix pencil method (MPM) has emerged as a versatile algorithm that offers tunable filtering and phasing capabilities. Extensive prior research has established the MPM as an adept fitting tool in signal analysis. Here, the efficacy of the MPM is investigated by precisely modeling noisy data to separate information-bearing signals from noise, thereby expanding its utility in various magnetic resonance applications. Simulated data is used to confirm the ability of the MPM to discern and separate signals from noise. Comparative analyses against standard Fourier-based filtering methods highlight the superior performance of the matrix pencil filter (MPF) in preserving signal fidelity without introducing aliasing artifacts. A variety of experimental data is then explored to demonstrate the proficiency of the MPF in characterizing signal components and correcting phase distortions. Collectively, these case studies underscore the filtering capacity of the MPM, portending its use for analytical sensitivity improvements in a wide range of NMR applications.</div></div>","PeriodicalId":16267,"journal":{"name":"Journal of magnetic resonance","volume":"368 ","pages":"Article 107780"},"PeriodicalIF":2.0000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of magnetic resonance","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1090780724001642","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Despite inherent sensitivity constraints, nuclear magnetic resonance (NMR) plays an indispensable role in probing molecular structures and dynamics across scientific disciplines. Remarkably, while extensive efforts have targeted instrumental and experimental sensitivity improvements, comparatively little focus has been dedicated to sensitivity enhancement through signal analysis. Amidst this present gap, the matrix pencil method (MPM) has emerged as a versatile algorithm that offers tunable filtering and phasing capabilities. Extensive prior research has established the MPM as an adept fitting tool in signal analysis. Here, the efficacy of the MPM is investigated by precisely modeling noisy data to separate information-bearing signals from noise, thereby expanding its utility in various magnetic resonance applications. Simulated data is used to confirm the ability of the MPM to discern and separate signals from noise. Comparative analyses against standard Fourier-based filtering methods highlight the superior performance of the matrix pencil filter (MPF) in preserving signal fidelity without introducing aliasing artifacts. A variety of experimental data is then explored to demonstrate the proficiency of the MPF in characterizing signal components and correcting phase distortions. Collectively, these case studies underscore the filtering capacity of the MPM, portending its use for analytical sensitivity improvements in a wide range of NMR applications.
期刊介绍:
The Journal of Magnetic Resonance presents original technical and scientific papers in all aspects of magnetic resonance, including nuclear magnetic resonance spectroscopy (NMR) of solids and liquids, electron spin/paramagnetic resonance (EPR), in vivo magnetic resonance imaging (MRI) and spectroscopy (MRS), nuclear quadrupole resonance (NQR) and magnetic resonance phenomena at nearly zero fields or in combination with optics. The Journal''s main aims include deepening the physical principles underlying all these spectroscopies, publishing significant theoretical and experimental results leading to spectral and spatial progress in these areas, and opening new MR-based applications in chemistry, biology and medicine. The Journal also seeks descriptions of novel apparatuses, new experimental protocols, and new procedures of data analysis and interpretation - including computational and quantum-mechanical methods - capable of advancing MR spectroscopy and imaging.