{"title":"An innovative defense strategy against targeted spreading in complex networks","authors":"Haofei Yin, Xiaohua Cui, An Zeng","doi":"10.1016/j.physa.2024.130120","DOIUrl":null,"url":null,"abstract":"<div><div>Protecting target nodes in complex networks is a critical issue in network security research. In many real-world scenarios, the identities of certain target nodes remain unknown, and the impact of this incomplete information on appropriately selecting initial spreaders is not fully understood. This paper first examines how the observability rate of target nodes affects the effectiveness of targeted spreading. The findings indicate that even if most target nodes are unobservable, identifying the optimal spreader for targeted propagation is still feasible in many real-world networks. This indicates that solely relying on protecting target nodes through external observation avoidance is insufficient. To address this issue, we developed a novel camouflage defense strategy for target nodes in complex networks by integrating target centrality, the distribution of target node groups, and the network distance between disguised and hidden target nodes. This strategy effectively hinders attackers’ selection of the optimal initial spreader by adjusting the visibility of selected target nodes and their neighbors, without altering the network structure. Finally, we validate the effectiveness of the proposed model in three aspects: matching accuracy of the optimal initial spreader, implementation of SIR propagation dynamics, and comparative testing against other models. These results were obtained not only from three types of generic artificial networks but also from multiple real datasets.</div></div>","PeriodicalId":20152,"journal":{"name":"Physica A: Statistical Mechanics and its Applications","volume":"654 ","pages":"Article 130120"},"PeriodicalIF":2.8000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica A: Statistical Mechanics and its Applications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378437124006290","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Protecting target nodes in complex networks is a critical issue in network security research. In many real-world scenarios, the identities of certain target nodes remain unknown, and the impact of this incomplete information on appropriately selecting initial spreaders is not fully understood. This paper first examines how the observability rate of target nodes affects the effectiveness of targeted spreading. The findings indicate that even if most target nodes are unobservable, identifying the optimal spreader for targeted propagation is still feasible in many real-world networks. This indicates that solely relying on protecting target nodes through external observation avoidance is insufficient. To address this issue, we developed a novel camouflage defense strategy for target nodes in complex networks by integrating target centrality, the distribution of target node groups, and the network distance between disguised and hidden target nodes. This strategy effectively hinders attackers’ selection of the optimal initial spreader by adjusting the visibility of selected target nodes and their neighbors, without altering the network structure. Finally, we validate the effectiveness of the proposed model in three aspects: matching accuracy of the optimal initial spreader, implementation of SIR propagation dynamics, and comparative testing against other models. These results were obtained not only from three types of generic artificial networks but also from multiple real datasets.
期刊介绍:
Physica A: Statistical Mechanics and its Applications
Recognized by the European Physical Society
Physica A publishes research in the field of statistical mechanics and its applications.
Statistical mechanics sets out to explain the behaviour of macroscopic systems by studying the statistical properties of their microscopic constituents.
Applications of the techniques of statistical mechanics are widespread, and include: applications to physical systems such as solids, liquids and gases; applications to chemical and biological systems (colloids, interfaces, complex fluids, polymers and biopolymers, cell physics); and other interdisciplinary applications to for instance biological, economical and sociological systems.