Mingfei Li , Shumin Wang , Haoyu Deng , Junyou Shi , Dan Zhang , Wenbiao Xu
{"title":"Valorizing lignocellulose into aromatic compounds via oxidative catalytic fractionation and transformation strategy catalyzed by polyoxometalates","authors":"Mingfei Li , Shumin Wang , Haoyu Deng , Junyou Shi , Dan Zhang , Wenbiao Xu","doi":"10.1016/j.jaap.2024.106786","DOIUrl":null,"url":null,"abstract":"<div><div>Utilizing renewable resources as substitutes for fossil resources is a crucial pathway towards achieving sustainability, with biomass conversion being a significant avenue. Catalytic fractionation of lignocellulose represents an effective approach to biomass conversion, wherein lignin is selectively separated from lignocellulose and depolymerized into high-value aromatic monomers within the reaction system. However, existing technologies face challenges such as low product selectivity and difficult separation. Herein, we employ oxidative catalytic fractionation (OCF) using polyoxometalates (POMs) as catalysts and a methanol/water mixture as solvent to directly oxidize and catalyze lignin in pine wood lignocellulose into aromatic compounds under an O<sub>2</sub> atmosphere, while preserving cellulose for subsequent utilization. The process yields up to 22.5 % aromatic monomers, with vanillin and methyl vanillate as the main products (calculated based on Klason lignin). Our approach provides a novel perspective for achieving highly selective oxidative fractionation and depolymerization of lignin, thus contributing to the valorization of lignocellulose.</div></div>","PeriodicalId":345,"journal":{"name":"Journal of Analytical and Applied Pyrolysis","volume":"183 ","pages":"Article 106786"},"PeriodicalIF":5.8000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Analytical and Applied Pyrolysis","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165237024004418","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Utilizing renewable resources as substitutes for fossil resources is a crucial pathway towards achieving sustainability, with biomass conversion being a significant avenue. Catalytic fractionation of lignocellulose represents an effective approach to biomass conversion, wherein lignin is selectively separated from lignocellulose and depolymerized into high-value aromatic monomers within the reaction system. However, existing technologies face challenges such as low product selectivity and difficult separation. Herein, we employ oxidative catalytic fractionation (OCF) using polyoxometalates (POMs) as catalysts and a methanol/water mixture as solvent to directly oxidize and catalyze lignin in pine wood lignocellulose into aromatic compounds under an O2 atmosphere, while preserving cellulose for subsequent utilization. The process yields up to 22.5 % aromatic monomers, with vanillin and methyl vanillate as the main products (calculated based on Klason lignin). Our approach provides a novel perspective for achieving highly selective oxidative fractionation and depolymerization of lignin, thus contributing to the valorization of lignocellulose.
期刊介绍:
The Journal of Analytical and Applied Pyrolysis (JAAP) is devoted to the publication of papers dealing with innovative applications of pyrolysis processes, the characterization of products related to pyrolysis reactions, and investigations of reaction mechanism. To be considered by JAAP, a manuscript should present significant progress in these topics. The novelty must be satisfactorily argued in the cover letter. A manuscript with a cover letter to the editor not addressing the novelty is likely to be rejected without review.