Heng Dong , Baoshan Ma , Yangyang Meng , Yiming Wu , Yongjing Liu , Tao Zeng , Jinyan Huang
{"title":"GRNMOPT: Inference of gene regulatory networks based on a multi-objective optimization approach","authors":"Heng Dong , Baoshan Ma , Yangyang Meng , Yiming Wu , Yongjing Liu , Tao Zeng , Jinyan Huang","doi":"10.1016/j.compbiolchem.2024.108223","DOIUrl":null,"url":null,"abstract":"<div><h3>Background and objective</h3><div>The reconstruction of gene regulatory networks (GRNs) stands as a vital approach in deciphering complex biological processes. The application of nonlinear ordinary differential equations (ODEs) models has demonstrated considerable efficacy in predicting GRNs. Notably, the decay rate and time delay are pivotal in authentic gene regulation, yet their systematic determination in ODEs models remains underexplored. The development of a comprehensive optimization framework for the effective estimation of these key parameters is essential for accurate GRN inference.</div></div><div><h3>Method</h3><div>This study introduces GRNMOPT, an innovative methodology for inferring GRNs from time-series and steady-state data. GRNMOPT employs a combined use of decay rate and time delay in constructing ODEs models to authentically represent gene regulatory processes. It incorporates a multi-objective optimization approach, optimizing decay rate and time delay concurrently to derive Pareto optimal sets for these factors, thereby maximizing accuracy metrics such as AUROC (Area Under the Receiver Operating Characteristic curve) and AUPR (Area Under the Precision-Recall curve). Additionally, the use of XGBoost for calculating feature importance aids in identifying potential regulatory gene links.</div></div><div><h3>Results</h3><div>Comprehensive experimental evaluations on two simulated datasets from DREAM4 and three real gene expression datasets (Yeast, In vivo Reverse-engineering and Modeling Assessment [IRMA], and Escherichia coli [E. coli]) reveal that GRNMOPT performs commendably across varying network scales. Furthermore, cross-validation experiments substantiate the robustness of GRNMOPT.</div></div><div><h3>Conclusion</h3><div>We propose a novel approach called GRNMOPT to infer GRNs based on a multi-objective optimization framework, which effectively improves inference accuracy and provides a powerful tool for GRNs inference.</div></div>","PeriodicalId":10616,"journal":{"name":"Computational Biology and Chemistry","volume":"113 ","pages":"Article 108223"},"PeriodicalIF":2.6000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Biology and Chemistry","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1476927124002111","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background and objective
The reconstruction of gene regulatory networks (GRNs) stands as a vital approach in deciphering complex biological processes. The application of nonlinear ordinary differential equations (ODEs) models has demonstrated considerable efficacy in predicting GRNs. Notably, the decay rate and time delay are pivotal in authentic gene regulation, yet their systematic determination in ODEs models remains underexplored. The development of a comprehensive optimization framework for the effective estimation of these key parameters is essential for accurate GRN inference.
Method
This study introduces GRNMOPT, an innovative methodology for inferring GRNs from time-series and steady-state data. GRNMOPT employs a combined use of decay rate and time delay in constructing ODEs models to authentically represent gene regulatory processes. It incorporates a multi-objective optimization approach, optimizing decay rate and time delay concurrently to derive Pareto optimal sets for these factors, thereby maximizing accuracy metrics such as AUROC (Area Under the Receiver Operating Characteristic curve) and AUPR (Area Under the Precision-Recall curve). Additionally, the use of XGBoost for calculating feature importance aids in identifying potential regulatory gene links.
Results
Comprehensive experimental evaluations on two simulated datasets from DREAM4 and three real gene expression datasets (Yeast, In vivo Reverse-engineering and Modeling Assessment [IRMA], and Escherichia coli [E. coli]) reveal that GRNMOPT performs commendably across varying network scales. Furthermore, cross-validation experiments substantiate the robustness of GRNMOPT.
Conclusion
We propose a novel approach called GRNMOPT to infer GRNs based on a multi-objective optimization framework, which effectively improves inference accuracy and provides a powerful tool for GRNs inference.
期刊介绍:
Computational Biology and Chemistry publishes original research papers and review articles in all areas of computational life sciences. High quality research contributions with a major computational component in the areas of nucleic acid and protein sequence research, molecular evolution, molecular genetics (functional genomics and proteomics), theory and practice of either biology-specific or chemical-biology-specific modeling, and structural biology of nucleic acids and proteins are particularly welcome. Exceptionally high quality research work in bioinformatics, systems biology, ecology, computational pharmacology, metabolism, biomedical engineering, epidemiology, and statistical genetics will also be considered.
Given their inherent uncertainty, protein modeling and molecular docking studies should be thoroughly validated. In the absence of experimental results for validation, the use of molecular dynamics simulations along with detailed free energy calculations, for example, should be used as complementary techniques to support the major conclusions. Submissions of premature modeling exercises without additional biological insights will not be considered.
Review articles will generally be commissioned by the editors and should not be submitted to the journal without explicit invitation. However prospective authors are welcome to send a brief (one to three pages) synopsis, which will be evaluated by the editors.