Transformer fusion for indoor RGB-D semantic segmentation

IF 4.3 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Computer Vision and Image Understanding Pub Date : 2024-09-13 DOI:10.1016/j.cviu.2024.104174
Zongwei Wu , Zhuyun Zhou , Guillaume Allibert , Christophe Stolz , Cédric Demonceaux , Chao Ma
{"title":"Transformer fusion for indoor RGB-D semantic segmentation","authors":"Zongwei Wu ,&nbsp;Zhuyun Zhou ,&nbsp;Guillaume Allibert ,&nbsp;Christophe Stolz ,&nbsp;Cédric Demonceaux ,&nbsp;Chao Ma","doi":"10.1016/j.cviu.2024.104174","DOIUrl":null,"url":null,"abstract":"<div><div>Fusing geometric cues with visual appearance is an imperative theme for RGB-D indoor semantic segmentation. Existing methods commonly adopt convolutional modules to aggregate multi-modal features, paying little attention to explicitly leveraging the long-range dependencies in feature fusion. Therefore, it is challenging for existing methods to accurately segment objects with large-scale variations. In this paper, we propose a novel transformer-based fusion scheme, named TransD-Fusion, to better model contextualized awareness. Specifically, TransD-Fusion consists of a self-refinement module, a calibration scheme with cross-interaction, and a depth-guided fusion. The objective is to first improve modality-specific features with self- and cross-attention, and then explore the geometric cues to better segment objects sharing a similar visual appearance. Additionally, our transformer fusion benefits from a semantic-aware position encoding which spatially constrains the attention to neighboring pixels. Extensive experiments on RGB-D benchmarks demonstrate that the proposed method performs well over the state-of-the-art methods by large margins.</div></div>","PeriodicalId":50633,"journal":{"name":"Computer Vision and Image Understanding","volume":"249 ","pages":"Article 104174"},"PeriodicalIF":4.3000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Vision and Image Understanding","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1077314224002558","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Fusing geometric cues with visual appearance is an imperative theme for RGB-D indoor semantic segmentation. Existing methods commonly adopt convolutional modules to aggregate multi-modal features, paying little attention to explicitly leveraging the long-range dependencies in feature fusion. Therefore, it is challenging for existing methods to accurately segment objects with large-scale variations. In this paper, we propose a novel transformer-based fusion scheme, named TransD-Fusion, to better model contextualized awareness. Specifically, TransD-Fusion consists of a self-refinement module, a calibration scheme with cross-interaction, and a depth-guided fusion. The objective is to first improve modality-specific features with self- and cross-attention, and then explore the geometric cues to better segment objects sharing a similar visual appearance. Additionally, our transformer fusion benefits from a semantic-aware position encoding which spatially constrains the attention to neighboring pixels. Extensive experiments on RGB-D benchmarks demonstrate that the proposed method performs well over the state-of-the-art methods by large margins.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
变换器融合用于室内 RGB-D 语义分割
融合几何线索与视觉外观是 RGB-D 室内语义分割的一个必要主题。现有方法通常采用卷积模块来聚合多模态特征,很少注意在特征融合中明确利用长程依赖关系。因此,现有方法很难准确地分割具有大规模变化的物体。在本文中,我们提出了一种新颖的基于变换器的融合方案,命名为 TransD-Fusion,以更好地模拟情境感知。具体来说,TransD-Fusion 由一个自改进模块、一个交叉交互校准方案和一个深度引导融合方案组成。我们的目标是首先通过自我关注和交叉关注改进特定模态特征,然后探索几何线索,以更好地分割具有相似视觉外观的物体。此外,我们的变换器融合还得益于语义感知位置编码,它在空间上限制了对邻近像素的关注。在 RGB-D 基准上进行的大量实验表明,所提出的方法在性能上远远优于最先进的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Computer Vision and Image Understanding
Computer Vision and Image Understanding 工程技术-工程:电子与电气
CiteScore
7.80
自引率
4.40%
发文量
112
审稿时长
79 days
期刊介绍: The central focus of this journal is the computer analysis of pictorial information. Computer Vision and Image Understanding publishes papers covering all aspects of image analysis from the low-level, iconic processes of early vision to the high-level, symbolic processes of recognition and interpretation. A wide range of topics in the image understanding area is covered, including papers offering insights that differ from predominant views. Research Areas Include: • Theory • Early vision • Data structures and representations • Shape • Range • Motion • Matching and recognition • Architecture and languages • Vision systems
期刊最新文献
Editorial Board Multi-Scale Adaptive Skeleton Transformer for action recognition Open-set domain adaptation with visual-language foundation models Leveraging vision-language prompts for real-world image restoration and enhancement RetSeg3D: Retention-based 3D semantic segmentation for autonomous driving
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1