S. Ramachandran , S. Surendiran , S. Vadivel , Razan A. Alshgari
{"title":"Fabrication of g-C3N4/MoS2@PPy composite based high efficient cathode for aqueous zinc ion battery","authors":"S. Ramachandran , S. Surendiran , S. Vadivel , Razan A. Alshgari","doi":"10.1016/j.mseb.2024.117731","DOIUrl":null,"url":null,"abstract":"<div><div>Zn-ion batteries in water, or ZIBs, are thought to be extremely promising substitutes for lithium-ion batteries. However, their commercial uses are limited by the sluggish diffusion of zinc ions in the positive electrode and their poor reversibility. Here, conductive graphite carbon sheets and conductive polypyrrole that have been effectively compounded with MoS<sub>2</sub> (g-C<sub>3</sub>N<sub>4</sub>/MoS<sub>2</sub>@PPy) are intended to serve as the cathode for aqueous Zinc ion battery (AZIBs). MoS<sub>2</sub> may evenly nucleate and develop on the PPy; this prevents MoS<sub>2</sub> from clumping together and enhancing active materials’ use. The g-C<sub>3</sub>N<sub>4</sub>/MoS<sub>2</sub> materials exhibit layered nanosheets with flower-like morphology after polypyrrole incorporation the flower changes to hierarchical flower-like morphology. The quantity of oxygenous compounds on g-C<sub>3</sub>N<sub>4</sub>′s loose surface makes this conceivable. The g-C<sub>3</sub>N<sub>4</sub>/MoS<sub>2</sub>@PPy material has a higher specific surface area of 118.21 m<sup>2</sup>/g compared to MoS<sub>2</sub> and g-C<sub>3</sub>N<sub>4</sub>/MoS<sub>2</sub>. The g-C<sub>3</sub>N<sub>4</sub>/MoS<sub>2</sub>@PPy exhibits a high specific capacity of 191.7 mAh g<sup>−1</sup> at 0.1 A g<sup>−1</sup>. Moreover, the specific capacity may return to 186.7 mAh g<sup>−1</sup>, 96.1 % capacity retention, if the current density is restored to 0.1 A g<sup>−1</sup>. The g-C<sub>3</sub>N<sub>4</sub>/MoS<sub>2</sub>@PPy maintain a higher specific capacity of 60 and 48 mAh g<sup>−1</sup>, respectively, at 1.0 and 3.0 A g<sup>−1</sup> for 1000 cycles. After 1000 cycles, the g-C<sub>3</sub>N<sub>4</sub>/MoS<sub>2</sub>@PPy show 100 % columbic efficiency. g-C<sub>3</sub>N<sub>4</sub>/MoS<sub>2</sub>@PPy electrode’s electrochemical reaction kinetics were examined using cyclic voltammetry (CV) measurements, and galvanostatic intermittent titration (GITT). These methods revealed the electrode’s low Zn<sup>2+</sup> diffusion energy barrier and desirable pseudocapacitive behaviors. The g-C<sub>3</sub>N<sub>4</sub>/MoS<sub>2</sub>@PPy Zn-intercalation process was elucidated using ex-situ characterizations.</div></div>","PeriodicalId":18233,"journal":{"name":"Materials Science and Engineering B-advanced Functional Solid-state Materials","volume":"310 ","pages":"Article 117731"},"PeriodicalIF":3.9000,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science and Engineering B-advanced Functional Solid-state Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921510724005609","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Zn-ion batteries in water, or ZIBs, are thought to be extremely promising substitutes for lithium-ion batteries. However, their commercial uses are limited by the sluggish diffusion of zinc ions in the positive electrode and their poor reversibility. Here, conductive graphite carbon sheets and conductive polypyrrole that have been effectively compounded with MoS2 (g-C3N4/MoS2@PPy) are intended to serve as the cathode for aqueous Zinc ion battery (AZIBs). MoS2 may evenly nucleate and develop on the PPy; this prevents MoS2 from clumping together and enhancing active materials’ use. The g-C3N4/MoS2 materials exhibit layered nanosheets with flower-like morphology after polypyrrole incorporation the flower changes to hierarchical flower-like morphology. The quantity of oxygenous compounds on g-C3N4′s loose surface makes this conceivable. The g-C3N4/MoS2@PPy material has a higher specific surface area of 118.21 m2/g compared to MoS2 and g-C3N4/MoS2. The g-C3N4/MoS2@PPy exhibits a high specific capacity of 191.7 mAh g−1 at 0.1 A g−1. Moreover, the specific capacity may return to 186.7 mAh g−1, 96.1 % capacity retention, if the current density is restored to 0.1 A g−1. The g-C3N4/MoS2@PPy maintain a higher specific capacity of 60 and 48 mAh g−1, respectively, at 1.0 and 3.0 A g−1 for 1000 cycles. After 1000 cycles, the g-C3N4/MoS2@PPy show 100 % columbic efficiency. g-C3N4/MoS2@PPy electrode’s electrochemical reaction kinetics were examined using cyclic voltammetry (CV) measurements, and galvanostatic intermittent titration (GITT). These methods revealed the electrode’s low Zn2+ diffusion energy barrier and desirable pseudocapacitive behaviors. The g-C3N4/MoS2@PPy Zn-intercalation process was elucidated using ex-situ characterizations.
期刊介绍:
The journal provides an international medium for the publication of theoretical and experimental studies and reviews related to the electronic, electrochemical, ionic, magnetic, optical, and biosensing properties of solid state materials in bulk, thin film and particulate forms. Papers dealing with synthesis, processing, characterization, structure, physical properties and computational aspects of nano-crystalline, crystalline, amorphous and glassy forms of ceramics, semiconductors, layered insertion compounds, low-dimensional compounds and systems, fast-ion conductors, polymers and dielectrics are viewed as suitable for publication. Articles focused on nano-structured aspects of these advanced solid-state materials will also be considered suitable.