Mohammad Hosein Beheshti, Ali Khavanin, Mostafa Jafarizaveh, Akram Tabrizi
{"title":"A novel acoustic micro-perforated panel (MPP) based on sugarcane fibers and bagasse","authors":"Mohammad Hosein Beheshti, Ali Khavanin, Mostafa Jafarizaveh, Akram Tabrizi","doi":"10.1186/s40712-024-00173-9","DOIUrl":null,"url":null,"abstract":"<div><p>Natural materials are becoming a reliable alternative to traditional artificial materials used in sound absorption insulation. The present study was conducted to investigate the acoustic insulation of micro-perforated panel (MPP) based on sugarcane fibers and bagasse as an available and environmentally friendly material. The absorption properties of single- and double-leaf natural micro-perforated panels (MPP) made of bagasse and also nonnatural MPPs made of Plexiglass were measured using an impedance tube based on ISO 10534–2. Then the effect of bagasse and sugarcane fibers composite on the air gap of MPP was investigated. The results showed the peak sound absorption of the bagasse composite is in the range of 1000 to 2000 Hz, and the sugarcane fiber composite has a higher sound absorption coefficient than the bagasse composite. Also, natural MPPs have a higher absorption coefficient than nonnatural MPPs at all frequencies, and as the panel thickness increases, the peak absorption coefficient shifts to lower frequencies. The peak sound absorption coefficient of double-leaf MPPs made of bagasse is 76%, in the range of 160 to 200 Hz. Using sugarcane fiber composite in the air gap of single- and double-leaf natural MPPs causes the absorption peak to shift to frequencies below 100 Hz. According to the results, natural MPPs have a high sound absorption coefficient at low frequencies. These panels can control sounds with much lower frequencies, especially in a double layer and along with cane fiber composite in their air gap.</p></div>","PeriodicalId":592,"journal":{"name":"International Journal of Mechanical and Materials Engineering","volume":"19 1","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://jmsg.springeropen.com/counter/pdf/10.1186/s40712-024-00173-9","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mechanical and Materials Engineering","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1186/s40712-024-00173-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Natural materials are becoming a reliable alternative to traditional artificial materials used in sound absorption insulation. The present study was conducted to investigate the acoustic insulation of micro-perforated panel (MPP) based on sugarcane fibers and bagasse as an available and environmentally friendly material. The absorption properties of single- and double-leaf natural micro-perforated panels (MPP) made of bagasse and also nonnatural MPPs made of Plexiglass were measured using an impedance tube based on ISO 10534–2. Then the effect of bagasse and sugarcane fibers composite on the air gap of MPP was investigated. The results showed the peak sound absorption of the bagasse composite is in the range of 1000 to 2000 Hz, and the sugarcane fiber composite has a higher sound absorption coefficient than the bagasse composite. Also, natural MPPs have a higher absorption coefficient than nonnatural MPPs at all frequencies, and as the panel thickness increases, the peak absorption coefficient shifts to lower frequencies. The peak sound absorption coefficient of double-leaf MPPs made of bagasse is 76%, in the range of 160 to 200 Hz. Using sugarcane fiber composite in the air gap of single- and double-leaf natural MPPs causes the absorption peak to shift to frequencies below 100 Hz. According to the results, natural MPPs have a high sound absorption coefficient at low frequencies. These panels can control sounds with much lower frequencies, especially in a double layer and along with cane fiber composite in their air gap.