Solar Flare Effects in the Martian Ionosphere and Magnetosphere: 3-D Time-Dependent MHD-MGITM Simulation and Comparison With MAVEN and MGS

IF 2.6 2区 地球科学 Q2 ASTRONOMY & ASTROPHYSICS Journal of Geophysical Research: Space Physics Pub Date : 2024-09-27 DOI:10.1029/2024JA032736
Xiaohua Fang, Yingjuan Ma, David Pawlowski, Shannon Curry
{"title":"Solar Flare Effects in the Martian Ionosphere and Magnetosphere: 3-D Time-Dependent MHD-MGITM Simulation and Comparison With MAVEN and MGS","authors":"Xiaohua Fang,&nbsp;Yingjuan Ma,&nbsp;David Pawlowski,&nbsp;Shannon Curry","doi":"10.1029/2024JA032736","DOIUrl":null,"url":null,"abstract":"<p>A comprehensive modeling study has been conducted to investigate space weather effects at Mars during the 10 September 2017 solar flare, utilizing an integrated framework that combines the global magnetohydrodynamic (MHD) model and Mars Global Ionosphere-Thermosphere Model (MGITM). This is the first time the thermosphere-ionosphere-magnetosphere system is self-consistently simulated under realistic, time-varying conditions. Our simulations align well with observations from the Mars Atmosphere and Volatile EvolutioN (MAVEN). Recognizing that complexities due to highly disturbed upstream conditions and rotating crustal fields obscure solar flare effects in orbit-to-orbit comparisons, we perform controlled simulations of nonflare and flare cases and exploit their contrast to quantify spatiotemporal variations in flare impact. Our results highlight pronounced and rapid dayside ionospheric perturbations, contrasting with weaker and delayed nightside responses. Notably, in the topside ionosphere, <span></span><math>\n <semantics>\n <mrow>\n <msubsup>\n <mi>O</mi>\n <mn>2</mn>\n <mo>+</mo>\n </msubsup>\n </mrow>\n <annotation> ${\\mathrm{O}}_{2}^{+}$</annotation>\n </semantics></math> and C<span></span><math>\n <semantics>\n <mrow>\n <msubsup>\n <mi>O</mi>\n <mn>2</mn>\n <mo>+</mo>\n </msubsup>\n </mrow>\n <annotation> ${\\mathrm{O}}_{2}^{+}$</annotation>\n </semantics></math> densities increase primarily on the dayside below <span></span><math>\n <semantics>\n <mrow>\n <mo>∼</mo>\n </mrow>\n <annotation> ${\\sim} $</annotation>\n </semantics></math>300 km altitude, peaking with an increase of 20%–30%. The <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>O</mi>\n <mo>+</mo>\n </msup>\n </mrow>\n <annotation> ${\\mathrm{O}}^{+}$</annotation>\n </semantics></math> density shows a more significant increase of up to <span></span><math>\n <semantics>\n <mrow>\n <mo>∼</mo>\n </mrow>\n <annotation> ${\\sim} $</annotation>\n </semantics></math>50%, extending into the magnetosphere and nightside via plasma transport, increasing its total loss rate by 14%. We observe distinct altitude-dependent patterns in dayside electron density enhancements in percent, characterized by a weakening with altitude and a rapid decay below <span></span><math>\n <semantics>\n <mrow>\n <mo>∼</mo>\n </mrow>\n <annotation> ${\\sim} $</annotation>\n </semantics></math>150 km in line with the flare development, and a gradual intensification between <span></span><math>\n <semantics>\n <mrow>\n <mo>∼</mo>\n </mrow>\n <annotation> ${\\sim} $</annotation>\n </semantics></math>150–300 km due to plasma transport and flare-induced atmospheric upwelling. Earlier Mars Global Surveyor observations were limited to the low-altitude pattern due to atmospheric expansion and missed the higher altitude variations observed by MAVEN.</p>","PeriodicalId":15894,"journal":{"name":"Journal of Geophysical Research: Space Physics","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Space Physics","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JA032736","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

A comprehensive modeling study has been conducted to investigate space weather effects at Mars during the 10 September 2017 solar flare, utilizing an integrated framework that combines the global magnetohydrodynamic (MHD) model and Mars Global Ionosphere-Thermosphere Model (MGITM). This is the first time the thermosphere-ionosphere-magnetosphere system is self-consistently simulated under realistic, time-varying conditions. Our simulations align well with observations from the Mars Atmosphere and Volatile EvolutioN (MAVEN). Recognizing that complexities due to highly disturbed upstream conditions and rotating crustal fields obscure solar flare effects in orbit-to-orbit comparisons, we perform controlled simulations of nonflare and flare cases and exploit their contrast to quantify spatiotemporal variations in flare impact. Our results highlight pronounced and rapid dayside ionospheric perturbations, contrasting with weaker and delayed nightside responses. Notably, in the topside ionosphere, O 2 + ${\mathrm{O}}_{2}^{+}$ and C O 2 + ${\mathrm{O}}_{2}^{+}$ densities increase primarily on the dayside below ${\sim} $ 300 km altitude, peaking with an increase of 20%–30%. The O + ${\mathrm{O}}^{+}$ density shows a more significant increase of up to ${\sim} $ 50%, extending into the magnetosphere and nightside via plasma transport, increasing its total loss rate by 14%. We observe distinct altitude-dependent patterns in dayside electron density enhancements in percent, characterized by a weakening with altitude and a rapid decay below ${\sim} $ 150 km in line with the flare development, and a gradual intensification between ${\sim} $ 150–300 km due to plasma transport and flare-induced atmospheric upwelling. Earlier Mars Global Surveyor observations were limited to the low-altitude pattern due to atmospheric expansion and missed the higher altitude variations observed by MAVEN.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
太阳耀斑对火星电离层和磁层的影响:三维随时间变化的 MHD-MGITM 模拟以及与 MAVEN 和 MGS 的比较
利用结合了全球磁流体动力(MHD)模型和火星全球电离层-热层模型(MGITM)的综合框架,开展了一项综合建模研究,以调查 2017 年 9 月 10 日太阳耀斑期间火星的空间天气效应。这是首次在现实的时变条件下对热层-电离层-磁层系统进行自洽模拟。我们的模拟结果与火星大气与挥发物演化(MAVEN)的观测结果非常吻合。由于认识到高度扰动的上游条件和旋转地壳场的复杂性会掩盖轨道到轨道比较中的太阳耀斑效应,我们对非耀斑和耀斑情况进行了受控模拟,并利用它们的对比来量化耀斑影响的时空变化。我们的结果凸显了电离层日侧明显而快速的扰动,与之形成对比的是夜侧较弱而延迟的反应。值得注意的是,在顶侧电离层中,O 2 + ${\mathrm{O}}_{2}^{+}$ 和 C O 2 + ${\mathrm{O}}_{2}^{+}$ 的密度主要是在∼ ${\sim} $ 300 公里高度以下的日侧增加,峰值增加了 20%-30%。O + ${\mathrm{O}}^{+}$ 密度的增长更为显著,最高可达 ∼ ${\sim} $50%,并通过等离子体传输延伸到磁层和夜侧,使其总损失率增加了 14%。我们观察到日侧电子密度增强的百分比随高度而变化,其特点是随着耀斑的发展,在 ∼ ${\sim} $ 150 公里以下随高度减弱并迅速衰减,而在∼ ${\sim} $ 150-300 公里之间由于等离子体传输和耀斑引起的大气上涌而逐渐增强。早期的火星全球勘测器观测仅限于大气膨胀导致的低空模式,而错过了 MAVEN 观测到的较高空变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Geophysical Research: Space Physics
Journal of Geophysical Research: Space Physics Earth and Planetary Sciences-Geophysics
CiteScore
5.30
自引率
35.70%
发文量
570
期刊最新文献
Characterizing the Magnetic and Plasma Environment Upstream of Ganymede Ion Diffusive Transport Across the Separatrix Between the Low-Latitude Mantle and the Plasma Sheet by Kinetic Alfvén Waves: MMS Observation Hemispheric Asymmetry of Ionospheric Poynting Flux During Geomagnetically Quiet Periods Influence of Initial Proton Energy on the Nonlinear Interactions Between Ring Current Protons and He+ Band EMIC Waves Electron Dissipation and Electromagnetic Work
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1