SOLID: minimizing tissue distortion for brain-wide profiling of diverse architectures

IF 14.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Nature Communications Pub Date : 2024-09-27 DOI:10.1038/s41467-024-52560-7
Jingtan Zhu, Xiaomei Liu, Zhang Liu, Yating Deng, Jianyi Xu, Kunxing Liu, Ruiying Zhang, Xizhi Meng, Peng Fei, Tingting Yu, Dan Zhu
{"title":"SOLID: minimizing tissue distortion for brain-wide profiling of diverse architectures","authors":"Jingtan Zhu, Xiaomei Liu, Zhang Liu, Yating Deng, Jianyi Xu, Kunxing Liu, Ruiying Zhang, Xizhi Meng, Peng Fei, Tingting Yu, Dan Zhu","doi":"10.1038/s41467-024-52560-7","DOIUrl":null,"url":null,"abstract":"<p>Brain-wide profiling of diverse biological components is fundamental for understanding complex brain pathology. Despite the availability in whole-brain imaging, it is still challenging to conduct multiplexed, brain-wide analysis with current tissue clearing techniques. Here, we propose SOLID, a hydrophobic tissue clearing method that can minimize tissue distortion while offering impressive clearing performance. SOLID achieves high-quality imaging of multi-color labeled mouse brain, and the acquired datasets can be effectively registered to the Allen Brain Atlas via commonly-used algorithms. SOLID enables generation of neural and vascular maps within one mouse brain, as well as tracing of specific neural projections labeled with viruses. SOLID also allows cross-channel investigations of β-amyloid plaques and neurovascular lesions in the reconstructed all-in-one panorama, providing quantitative insights into structural interactions at different stages of Alzheimer’s disease. Altogether, SOLID provides a robust pipeline for whole-brain mapping, which may widen the utility of tissue clearing techniques in diverse neuroscience research.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":null,"pages":null},"PeriodicalIF":14.7000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-024-52560-7","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Brain-wide profiling of diverse biological components is fundamental for understanding complex brain pathology. Despite the availability in whole-brain imaging, it is still challenging to conduct multiplexed, brain-wide analysis with current tissue clearing techniques. Here, we propose SOLID, a hydrophobic tissue clearing method that can minimize tissue distortion while offering impressive clearing performance. SOLID achieves high-quality imaging of multi-color labeled mouse brain, and the acquired datasets can be effectively registered to the Allen Brain Atlas via commonly-used algorithms. SOLID enables generation of neural and vascular maps within one mouse brain, as well as tracing of specific neural projections labeled with viruses. SOLID also allows cross-channel investigations of β-amyloid plaques and neurovascular lesions in the reconstructed all-in-one panorama, providing quantitative insights into structural interactions at different stages of Alzheimer’s disease. Altogether, SOLID provides a robust pipeline for whole-brain mapping, which may widen the utility of tissue clearing techniques in diverse neuroscience research.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
SOLID:最大限度地减少组织失真,进行全脑范围的不同结构分析
对各种生物成分进行全脑分析是了解复杂脑病理学的基础。尽管全脑成像技术已经普及,但利用现有的组织清除技术进行多路复用的全脑分析仍具有挑战性。在这里,我们提出了一种疏水性组织清除方法 SOLID,它能最大限度地减少组织变形,同时提供令人印象深刻的清除性能。SOLID 实现了多色标记小鼠大脑的高质量成像,获得的数据集可通过常用算法有效地注册到艾伦脑图谱。SOLID 能够在一个小鼠大脑中生成神经和血管图,并追踪用病毒标记的特定神经投射。SOLID 还能对重建的一体化全景图中的β-淀粉样蛋白斑块和神经血管病变进行跨通道研究,为阿尔茨海默病不同阶段的结构相互作用提供定量分析。总之,SOLID 为全脑绘图提供了一个强大的管道,可拓宽组织清除技术在各种神经科学研究中的用途。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
期刊最新文献
Author Correction: Palmitoylation of ULK1 by ZDHHC13 plays a crucial role in autophagy Metamaterials with negative compressibility highlight evolving interpretations and opportunities Lack of SMARCB1 expression characterizes a subset of human and murine peripheral T-cell lymphomas Developmental assembly of multi-component polymer systems through interconnected synthetic gene networks in vitro Targeting Pseudomonas aeruginosa biofilm with an evolutionary trained bacteriophage cocktail exploiting phage resistance trade-offs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1