Propane wet reforming over PtSn nanoparticles on γ-Al2O3 for acetone synthesis

IF 14.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Nature Communications Pub Date : 2024-09-30 DOI:10.1038/s41467-024-52702-x
Xinlong Ma, Haibin Yin, Zhengtian Pu, Xinyan Zhang, Sunpei Hu, Tao Zhou, Weizhe Gao, Laihao Luo, Hongliang Li, Jie Zeng
{"title":"Propane wet reforming over PtSn nanoparticles on γ-Al2O3 for acetone synthesis","authors":"Xinlong Ma, Haibin Yin, Zhengtian Pu, Xinyan Zhang, Sunpei Hu, Tao Zhou, Weizhe Gao, Laihao Luo, Hongliang Li, Jie Zeng","doi":"10.1038/s41467-024-52702-x","DOIUrl":null,"url":null,"abstract":"<p>Acetone serves as an important solvent and building block for the chemical industry, but the current industrial synthesis of acetone is generally accompanied by the energy-intensive and costly cumene process used for phenol production. Here we propose a sustainable route for acetone synthesis via propane wet reforming at a moderate temperature of 350 <sup>o</sup>C with the use of platinum-tin nanoparticles supported on γ-aluminium oxide (PtSn/γ-Al<sub>2</sub>O<sub>3</sub>) as catalyst. We achieve an acetone productivity of 858.4 μmol/g with a selectivity of 57.8% among all carbon-based products and 99.3% among all liquid products. Detailed spectroscopic and controlled experiments reveal that the acetone is formed through a tandem catalytic process involving propene and isopropanol as intermediates. We also demonstrate facile ketone synthesis via wet reforming with the use of different alkanes (<i>e.g</i>., n-butane, n-pentane, n-hexane, n-heptane, and n-octane) as substrates, proving the wide applicability of this strategy.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":null,"pages":null},"PeriodicalIF":14.7000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-024-52702-x","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Acetone serves as an important solvent and building block for the chemical industry, but the current industrial synthesis of acetone is generally accompanied by the energy-intensive and costly cumene process used for phenol production. Here we propose a sustainable route for acetone synthesis via propane wet reforming at a moderate temperature of 350 oC with the use of platinum-tin nanoparticles supported on γ-aluminium oxide (PtSn/γ-Al2O3) as catalyst. We achieve an acetone productivity of 858.4 μmol/g with a selectivity of 57.8% among all carbon-based products and 99.3% among all liquid products. Detailed spectroscopic and controlled experiments reveal that the acetone is formed through a tandem catalytic process involving propene and isopropanol as intermediates. We also demonstrate facile ketone synthesis via wet reforming with the use of different alkanes (e.g., n-butane, n-pentane, n-hexane, n-heptane, and n-octane) as substrates, proving the wide applicability of this strategy.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在 γ-Al2O3 上的 PtSn 纳米粒子上进行丙烷湿重整以合成丙酮
丙酮是化学工业的重要溶剂和基础材料,但目前丙酮的工业合成一般都伴随着用于生产苯酚的高能耗、高成本的积烯工艺。在此,我们提出了一条可持续的丙酮合成路线,即以铂锡纳米粒子为载体,以γ-氧化铝(PtSn/γ-Al2O3)为催化剂,在 350 摄氏度的适度温度下通过丙烷湿重整合成丙酮。我们的丙酮生产率达到 858.4 μmol/g,在所有碳基产物中的选择性为 57.8%,在所有液态产物中的选择性为 99.3%。详细的光谱和控制实验显示,丙酮是通过以丙烯和异丙醇为中间体的串联催化过程形成的。我们还展示了以不同的烷烃(如正丁烷、正戊烷、正己烷、正庚烷和正辛烷)为底物,通过湿重整轻松合成酮的过程,证明了这一策略的广泛适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
期刊最新文献
Dynamic Jahn-Teller effect in the strong spin-orbit coupling regime. Polymeric nanocarrier via metabolism regulation mediates immunogenic cell death with spatiotemporal orchestration for cancer immunotherapy. Targeting osteoblastic 11β-HSD1 to combat high-fat diet-induced bone loss and obesity. The single-cell transcriptomic atlas iPain identifies senescence of nociceptors as a therapeutical target for chronic pain treatment. Author Correction: Compartments in medulloblastoma with extensive nodularity are connected through differentiation along the granular precursor lineage
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1