Decoding the Promotional Effect of Iron in Bimetallic Pt–Fe-nanoparticles on the Low Temperature Reverse Water–Gas Shift Reaction

IF 15.6 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Journal of the American Chemical Society Pub Date : 2024-09-30 DOI:10.1021/jacs.4c08517
Colin Hansen, Wei Zhou, Enzo Brack, Yuhao Wang, Chunliang Wang, James Paterson, Jamie Southouse, Christophe Copéret
{"title":"Decoding the Promotional Effect of Iron in Bimetallic Pt–Fe-nanoparticles on the Low Temperature Reverse Water–Gas Shift Reaction","authors":"Colin Hansen, Wei Zhou, Enzo Brack, Yuhao Wang, Chunliang Wang, James Paterson, Jamie Southouse, Christophe Copéret","doi":"10.1021/jacs.4c08517","DOIUrl":null,"url":null,"abstract":"The reverse water–gas shift (RWGS) reaction is a key technology of the chemical industry, central to the emerging circular carbon economy. Pt-based catalysts have previously been shown to effectively promote RWGS, especially when modified by promoter elements. However, their active states are still poorly understood. Here, we show that the intimate incorporation of an iron promoter into metal-oxide-supported Pt-based nanoparticles can increase their activity and selectivity for the low temperature reverse water–gas shift (LT-RWGS) substantially and drastically outperform unpromoted Pt-based materials. Specifically, the study explores the promotional effect of iron in Pt–Fe bimetallic systems supported on silica (Pt<sub><i>x</i></sub>Fe<sub><i>y</i></sub>@SiO<sub>2</sub>) prepared by surface organometallic chemistry (SOMC). The most active catalyst (Pt<sub>1</sub>Fe<sub>1</sub>@SiO<sub>2</sub>) shows high selectivity (&gt;99% CO) toward CO at a formation rate of 0.192 mol<sub>CO</sub> h<sup>–1</sup> g<sub>cat</sub><sup>–1</sup>, which is significantly higher than that of monometallic Pt@SiO<sub>2</sub> (96% sel. and 0.022 mol<sub>CO</sub> h<sup>–1</sup> g<sub>cat</sub><sup>–1</sup>). In-situ diffuse reflectance FT-IR spectroscopy (DRIFTS) and X-ray absorption spectroscopy (XAS) indicate a dynamic process at the catalyst surface under the reaction conditions, revealing distinct reaction pathways for the monometallic Pt@SiO<sub>2</sub> and bimetallic Pt<sub><i>x</i></sub>Fe<sub><i>y</i></sub>@SiO<sub>2</sub> systems.","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":"1 1","pages":""},"PeriodicalIF":15.6000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jacs.4c08517","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The reverse water–gas shift (RWGS) reaction is a key technology of the chemical industry, central to the emerging circular carbon economy. Pt-based catalysts have previously been shown to effectively promote RWGS, especially when modified by promoter elements. However, their active states are still poorly understood. Here, we show that the intimate incorporation of an iron promoter into metal-oxide-supported Pt-based nanoparticles can increase their activity and selectivity for the low temperature reverse water–gas shift (LT-RWGS) substantially and drastically outperform unpromoted Pt-based materials. Specifically, the study explores the promotional effect of iron in Pt–Fe bimetallic systems supported on silica (PtxFey@SiO2) prepared by surface organometallic chemistry (SOMC). The most active catalyst (Pt1Fe1@SiO2) shows high selectivity (>99% CO) toward CO at a formation rate of 0.192 molCO h–1 gcat–1, which is significantly higher than that of monometallic Pt@SiO2 (96% sel. and 0.022 molCO h–1 gcat–1). In-situ diffuse reflectance FT-IR spectroscopy (DRIFTS) and X-ray absorption spectroscopy (XAS) indicate a dynamic process at the catalyst surface under the reaction conditions, revealing distinct reaction pathways for the monometallic Pt@SiO2 and bimetallic PtxFey@SiO2 systems.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
解码双金属铂-铁-纳米粒子中的铁对低温反向水-气变换反应的促进作用
水煤气反向转化(RWGS)反应是化学工业的一项关键技术,也是新兴循环碳经济的核心。此前已有研究表明,铂基催化剂能有效促进 RWGS 反应,尤其是在经过促进剂元素修饰的情况下。然而,人们对它们的活性状态仍然知之甚少。在这里,我们展示了在金属氧化物支撑的铂基纳米粒子中紧密加入铁促进剂,可大幅提高其在低温水气反向变换(LT-RWGS)中的活性和选择性,并大大优于未加入促进剂的铂基材料。具体而言,本研究探讨了通过表面有机金属化学(SOMC)制备的、支撑在二氧化硅(PtxFey@SiO2)上的铂铁双金属体系中铁的促进作用。活性最高的催化剂(Pt1Fe1@SiO2)对一氧化碳具有高选择性(99% CO),其生成率为 0.192 molCO h-1 gcat-1,明显高于单金属 Pt@SiO2(96% sel.和 0.022 molCO h-1 gcat-1)。原位漫反射傅立叶变换红外光谱(DRIFTS)和 X 射线吸收光谱(XAS)表明,在反应条件下催化剂表面存在一个动态过程,揭示了单金属 Pt@SiO2 和双金属 PtxFey@SiO2 系统的不同反应途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
24.40
自引率
6.00%
发文量
2398
审稿时长
1.6 months
期刊介绍: The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.
期刊最新文献
Eu2Li(C3)H: A Carbide Hydride Phase Incorporating Eu2+ Br-Mediated Spin-State Control in Nickelocene and Cobaltocene Reversibly Redox-Active Iron Oxide Structures in FeNC Catalysts Identified by Microscopy and Spectroelectrochemical EPR and Mössbauer Methods Linkage-Editing of β-Glucosylceramide and β-Glucosylcholesterol: Development of β-Selective C-Glucosylation and Potent Mincle Ligands Stability and Degradation-based Proteome Profiling Reveals Cannabidiol as a Promising CDC123-eIF2γ Inhibitor for Colorectal Cancer Therapy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1