Differential proteins from EVs identification based on tandem mass tags analysis and effect of Treg-derived EVs on T-lymphocytes in COPD patients.

IF 5.8 2区 医学 Q1 Medicine Respiratory Research Pub Date : 2024-09-28 DOI:10.1186/s12931-024-02980-2
Xuefang Tao, Zhisong Xu, Hai Tian, Jingfeng He, Guowen Wang, Xuexia Tao
{"title":"Differential proteins from EVs identification based on tandem mass tags analysis and effect of Treg-derived EVs on T-lymphocytes in COPD patients.","authors":"Xuefang Tao, Zhisong Xu, Hai Tian, Jingfeng He, Guowen Wang, Xuexia Tao","doi":"10.1186/s12931-024-02980-2","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Chronic obstructive pulmonary disease (COPD) is a widespread respiratory disease. This study examines extracellular vesicles (EVs) and proteins contained in EVs in COPD.</p><p><strong>Methods: </strong>Blood samples were collected from 40 COPD patients and 10 health controls. Cytokines including IFN-γ, TNF-α, IL-1β, IL-6, IL-8, and IL-17, were measured by ELISA. Small EVs samples were extracted from plasma and identified by transmission electron microscope (TEM), nanoparticle tracking analysis (NTA), and Western blot. Protein components contained in EVs were analyzed by Tandem Mass Tags (TMT) to identify differential proteins. Treg-derived EV was extracted and added to isolated CD8<sup>+</sup>, Treg, and Th17 subsets to assess its effect on T-lymphocytes.</p><p><strong>Results: </strong>ELISA revealed higher levels of all cytokines and flow cytometry suggested a higher proportion of Treg and Th17 cells in COPD patients. After identification, TMT analysis identified 207 unique protein components, including five potential COPD biomarkers: BTRC, TRIM28, CD209, NCOA3, and SSR3. Flow cytometry revealed that Treg-derived EVs inhibited differentiation into CD8<sup>+</sup>, CD4<sup>+</sup>, and Th17 cells.</p><p><strong>Conclusion: </strong>The study shows that cytokines, T-lymphocyte subsets differences in COPD and Treg-derived EVs influence T-lymphocyte differentiation. Identified biomarkers may assist in understanding COPD pathogenesis, prognosis, and therapy. The study contributes to COPD biomarker research.</p>","PeriodicalId":49131,"journal":{"name":"Respiratory Research","volume":null,"pages":null},"PeriodicalIF":5.8000,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11439212/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Respiratory Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12931-024-02980-2","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Chronic obstructive pulmonary disease (COPD) is a widespread respiratory disease. This study examines extracellular vesicles (EVs) and proteins contained in EVs in COPD.

Methods: Blood samples were collected from 40 COPD patients and 10 health controls. Cytokines including IFN-γ, TNF-α, IL-1β, IL-6, IL-8, and IL-17, were measured by ELISA. Small EVs samples were extracted from plasma and identified by transmission electron microscope (TEM), nanoparticle tracking analysis (NTA), and Western blot. Protein components contained in EVs were analyzed by Tandem Mass Tags (TMT) to identify differential proteins. Treg-derived EV was extracted and added to isolated CD8+, Treg, and Th17 subsets to assess its effect on T-lymphocytes.

Results: ELISA revealed higher levels of all cytokines and flow cytometry suggested a higher proportion of Treg and Th17 cells in COPD patients. After identification, TMT analysis identified 207 unique protein components, including five potential COPD biomarkers: BTRC, TRIM28, CD209, NCOA3, and SSR3. Flow cytometry revealed that Treg-derived EVs inhibited differentiation into CD8+, CD4+, and Th17 cells.

Conclusion: The study shows that cytokines, T-lymphocyte subsets differences in COPD and Treg-derived EVs influence T-lymphocyte differentiation. Identified biomarkers may assist in understanding COPD pathogenesis, prognosis, and therapy. The study contributes to COPD biomarker research.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于串联质量标记分析的 EVs 差异蛋白质鉴定及 Treg 衍生 EVs 对 COPD 患者 T 淋巴细胞的影响
背景:慢性阻塞性肺疾病(COPD)是一种广泛存在的呼吸系统疾病。本研究对慢性阻塞性肺病患者的细胞外囊泡 (EV) 和 EV 中所含的蛋白质进行了研究:方法:收集 40 名慢性阻塞性肺病患者和 10 名健康对照者的血液样本。采用 ELISA 法检测细胞因子,包括 IFN-γ、TNF-α、IL-1β、IL-6、IL-8 和 IL-17。从血浆中提取小的 EVs 样品,并通过透射电子显微镜(TEM)、纳米颗粒追踪分析(NTA)和 Western 印迹进行鉴定。利用串联质量标签(TMT)分析了EVs中的蛋白质成分,以确定不同的蛋白质。提取Treg衍生EV并将其加入分离的CD8+、Treg和Th17亚群,以评估其对T淋巴细胞的影响:结果:酶联免疫吸附试验(ELISA)显示慢性阻塞性肺病患者体内所有细胞因子的水平都较高,流式细胞术显示慢性阻塞性肺病患者体内 Treg 和 Th17 细胞的比例较高。经过鉴定,TMT 分析确定了 207 种独特的蛋白质成分,其中包括五种潜在的慢性阻塞性肺病生物标志物:BTRC、TRIM28、CD209、NCOA3 和 SSR3。流式细胞术显示,Treg衍生的EV抑制了CD8+、CD4+和Th17细胞的分化:研究表明,细胞因子、慢性阻塞性肺病的 T 淋巴细胞亚群差异以及 Treg 衍生的 EVs 会影响 T 淋巴细胞的分化。确定的生物标志物可能有助于了解慢性阻塞性肺病的发病机制、预后和治疗。该研究有助于慢性阻塞性肺病生物标志物的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Respiratory Research
Respiratory Research RESPIRATORY SYSTEM-
CiteScore
9.70
自引率
1.70%
发文量
314
审稿时长
4-8 weeks
期刊介绍: Respiratory Research publishes high-quality clinical and basic research, review and commentary articles on all aspects of respiratory medicine and related diseases. As the leading fully open access journal in the field, Respiratory Research provides an essential resource for pulmonologists, allergists, immunologists and other physicians, researchers, healthcare workers and medical students with worldwide dissemination of articles resulting in high visibility and generating international discussion. Topics of specific interest include asthma, chronic obstructive pulmonary disease, cystic fibrosis, genetics, infectious diseases, interstitial lung diseases, lung development, lung tumors, occupational and environmental factors, pulmonary circulation, pulmonary pharmacology and therapeutics, respiratory immunology, respiratory physiology, and sleep-related respiratory problems.
期刊最新文献
Ivacaftor ameliorates mucus burden, bacterial load, and inflammation in acute but not chronic P. aeruginosa infection in hG551D rats. Loss of interferon regulatory factor-1 prevents lung fibrosis by upregulation of pon1 expression. Patient-centered care in pulmonary fibrosis: access, anticipate, and act. Shenqifuzheng injection inhibits lactic acid-induced cisplatin resistance in NSCLC by affecting FBXO22/p53 axis through FOXO3. Quantitative micro-CT-derived biomarkers elucidate age-related lung fibrosis in elder mice.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1