RNAi-Induced Gene Silencing against Chikungunya and COVID-19: What Have We Learned So Far, and What Is the Way Forward?

IF 3.8 3区 医学 Q2 VIROLOGY Viruses-Basel Pub Date : 2024-09-20 DOI:10.3390/v16091489
Kingshuk Panda, Kalichamy Alagarasu, Rajarshee Tagore, Mandar Paingankar, Satyendra Kumar, Manish Kumar Jeengar, Sarah Cherian, Deepti Parashar
{"title":"RNAi-Induced Gene Silencing against Chikungunya and COVID-19: What Have We Learned So Far, and What Is the Way Forward?","authors":"Kingshuk Panda, Kalichamy Alagarasu, Rajarshee Tagore, Mandar Paingankar, Satyendra Kumar, Manish Kumar Jeengar, Sarah Cherian, Deepti Parashar","doi":"10.3390/v16091489","DOIUrl":null,"url":null,"abstract":"<p><p>RNA interference (RNAi) is a process in which small RNA molecules (such as small interfering RNAs or siRNAs) bind to specific messenger RNAs (mRNAs), leading to its degradation and inhibition of protein synthesis. Our studies have shown that RNAi can effectively silence genes involved in the replication of the Chikungunya virus (CHIKV) in cells. However, these investigations were performed only in laboratory settings and have yet to be tested in human clinical trials. Researchers need to conduct more research to determine the safety and efficacy of RNAi-based therapies as a therapeutic agent to treat viral infections. In this review, the history of evolution of siRNA as an inhibitor of protein synthesis, along with its current developments, is discussed based on our experience. Moreover, this review examines the hurdles and future implications associated with siRNA based therapeutic approaches.</p>","PeriodicalId":49328,"journal":{"name":"Viruses-Basel","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11437507/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Viruses-Basel","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/v16091489","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"VIROLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

RNA interference (RNAi) is a process in which small RNA molecules (such as small interfering RNAs or siRNAs) bind to specific messenger RNAs (mRNAs), leading to its degradation and inhibition of protein synthesis. Our studies have shown that RNAi can effectively silence genes involved in the replication of the Chikungunya virus (CHIKV) in cells. However, these investigations were performed only in laboratory settings and have yet to be tested in human clinical trials. Researchers need to conduct more research to determine the safety and efficacy of RNAi-based therapies as a therapeutic agent to treat viral infections. In this review, the history of evolution of siRNA as an inhibitor of protein synthesis, along with its current developments, is discussed based on our experience. Moreover, this review examines the hurdles and future implications associated with siRNA based therapeutic approaches.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
针对基孔肯雅病毒和 COVID-19 的 RNAi- 诱导基因沉默:迄今为止我们学到了什么,未来的方向是什么?
RNA 干扰(RNAi)是小 RNA 分子(如小干扰 RNA 或 siRNA)与特定信使 RNA(mRNA)结合,导致其降解并抑制蛋白质合成的过程。我们的研究表明,RNAi 能有效抑制参与基孔肯雅病毒(CHIKV)在细胞中复制的基因。不过,这些研究仅在实验室环境中进行,尚未在人体临床试验中进行测试。研究人员需要开展更多的研究,以确定基于 RNAi 的疗法作为治疗病毒感染的药物的安全性和有效性。本综述将根据我们的经验,讨论 siRNA 作为蛋白质合成抑制剂的演变历史及其目前的发展情况。此外,本综述还探讨了与 siRNA 治疗方法相关的障碍和未来影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Viruses-Basel
Viruses-Basel VIROLOGY-
CiteScore
7.30
自引率
12.80%
发文量
2445
审稿时长
1 months
期刊介绍: Viruses (ISSN 1999-4915) is an open access journal which provides an advanced forum for studies of viruses. It publishes reviews, regular research papers, communications, conference reports and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. We also encourage the publication of timely reviews and commentaries on topics of interest to the virology community and feature highlights from the virology literature in the ''News and Views'' section. Electronic files or software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.
期刊最新文献
Putting a Kink in HIV-1 Particle Infectivity: Rocaglamide Inhibits HIV-1 Replication by Altering Gag-Genomic RNA Interaction. Clinical Evaluation of the VirClia IgM/IgG Chemiluminescence Tests for the Diagnosis of Tick-Borne Encephalitis in an Endemic Part of Norway. The Omicron Variant Is Associated with a Reduced Risk of the Post COVID-19 Condition and Its Main Phenotypes Compared to the Wild-Type Virus: Results from the EuCARE-POSTCOVID-19 Study. Unleashing Nature's Allies: Comparing the Vertical Transmission Dynamics of Insect-Specific and Vertebrate-Infecting Flaviviruses in Mosquitoes. Zooming in and out: Exploring RNA Viral Infections with Multiscale Microscopic Methods.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1