Wen Chyin Yew, Stacey Adlard, Michael James Dunn, Siti Aisyah Alias, David Anthony Pearce, Azizan Abu Samah, Peter Convey
{"title":"Seasonal variation in the stomach microbiota of two sympatrically breeding <i>Pygoscelis</i> penguin species at Signy Island, South Orkney Islands.","authors":"Wen Chyin Yew, Stacey Adlard, Michael James Dunn, Siti Aisyah Alias, David Anthony Pearce, Azizan Abu Samah, Peter Convey","doi":"10.1099/mic.0.001503","DOIUrl":null,"url":null,"abstract":"<p><p>The gut microbiomes of Antarctic penguins are important for the fitness of the host birds and their chicks. The compositions of microbial communities in Antarctic penguin guts are strongly associated with the birds' diet, physiological adaptation and phylogeny. Whilst seasonal changes in food resources, distribution and population parameters of Antarctic penguins have been well addressed, little research is available on the stability or variability of penguin stomach microbiomes over time. Here, we focused on two <i>Pygoscelis</i> penguin species breeding sympatrically in the maritime Antarctic and analysed their stomach contents to assess whether penguin gut microbiota differed over three austral summer breeding seasons. We used a high-throughput DNA sequencing approach to study bacterial diversity in stomach regurgitates of Adélie (<i>Pygoscelis adeliae</i>) and chinstrap (<i>Pygoscelis antarctica</i>) penguins that have a similar foraging regime on Signy Island (South Orkney Islands). Our data revealed significant differences in bacterial alpha and beta diversity between the study seasons. We also identified bacterial genera that were significantly associated with specific breeding seasons, diet compositions, chick-rearing stages and sampling events. This study provides a baseline for establishing future monitoring of penguin gut microbiomes in a rapidly changing environment.</p>","PeriodicalId":49819,"journal":{"name":"Microbiology-Sgm","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11541225/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbiology-Sgm","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1099/mic.0.001503","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The gut microbiomes of Antarctic penguins are important for the fitness of the host birds and their chicks. The compositions of microbial communities in Antarctic penguin guts are strongly associated with the birds' diet, physiological adaptation and phylogeny. Whilst seasonal changes in food resources, distribution and population parameters of Antarctic penguins have been well addressed, little research is available on the stability or variability of penguin stomach microbiomes over time. Here, we focused on two Pygoscelis penguin species breeding sympatrically in the maritime Antarctic and analysed their stomach contents to assess whether penguin gut microbiota differed over three austral summer breeding seasons. We used a high-throughput DNA sequencing approach to study bacterial diversity in stomach regurgitates of Adélie (Pygoscelis adeliae) and chinstrap (Pygoscelis antarctica) penguins that have a similar foraging regime on Signy Island (South Orkney Islands). Our data revealed significant differences in bacterial alpha and beta diversity between the study seasons. We also identified bacterial genera that were significantly associated with specific breeding seasons, diet compositions, chick-rearing stages and sampling events. This study provides a baseline for establishing future monitoring of penguin gut microbiomes in a rapidly changing environment.
期刊介绍:
We publish high-quality original research on bacteria, fungi, protists, archaea, algae, parasites and other microscopic life forms.
Topics include but are not limited to:
Antimicrobials and antimicrobial resistance
Bacteriology and parasitology
Biochemistry and biophysics
Biofilms and biological systems
Biotechnology and bioremediation
Cell biology and signalling
Chemical biology
Cross-disciplinary work
Ecology and environmental microbiology
Food microbiology
Genetics
Host–microbe interactions
Microbial methods and techniques
Microscopy and imaging
Omics, including genomics, proteomics and metabolomics
Physiology and metabolism
Systems biology and synthetic biology
The microbiome.