Local and systemic effects of microplastic particles through cell damage, release of chemicals and drugs, dysbiosis, and interference with the absorption of nutrients.

IF 6.4 2区 医学 Q1 ENVIRONMENTAL SCIENCES Journal of Toxicology and Environmental Health-Part B-Critical Reviews Pub Date : 2024-11-16 Epub Date: 2024-09-26 DOI:10.1080/10937404.2024.2406192
Eleonore Fröhlich
{"title":"Local and systemic effects of microplastic particles through cell damage, release of chemicals and drugs, dysbiosis, and interference with the absorption of nutrients.","authors":"Eleonore Fröhlich","doi":"10.1080/10937404.2024.2406192","DOIUrl":null,"url":null,"abstract":"<p><p>Microplastic particles (MPs) have been detected in a variety of environmental samples, including soil, water, food, and air. Cellular studies and animal exposures reported that exposure to MPs composed of different polymers might result in adverse effects at the portal of entry (local) or throughout the body (systemic). The most relevant routes of particle uptake into the body are oral and respiratory exposure. This review describes the various processes that may contribute to the adverse effects of MPs. Only MPs up to 5 µm were found to cross epithelial barriers to a significant extent. However, MPs may also exert a detrimental impact on human health by acting at the epithelial barrier and within the lumen of the orogastrointestinal and respiratory tract. The potential for adverse effects on human health resulting from the leaching, sorption, and desorption of chemicals, as well as the impact of MPs on nutritional status and dysbiosis, are reviewed. <i>In vitro</i> models are suggested as a means of (1) assessing permeation, (2) determining adverse effects on cells of the epithelial barrier, (3) examining influence of digestive fluids on leaching, desorption, and particle properties, and (4) role of microbiota-epithelial cell interactions. The contribution of these mechanisms to human health depends upon exposure levels, which unfortunately have been estimated very differently.</p>","PeriodicalId":49971,"journal":{"name":"Journal of Toxicology and Environmental Health-Part B-Critical Reviews","volume":"27 8","pages":"315-344"},"PeriodicalIF":6.4000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Toxicology and Environmental Health-Part B-Critical Reviews","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/10937404.2024.2406192","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/26 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Microplastic particles (MPs) have been detected in a variety of environmental samples, including soil, water, food, and air. Cellular studies and animal exposures reported that exposure to MPs composed of different polymers might result in adverse effects at the portal of entry (local) or throughout the body (systemic). The most relevant routes of particle uptake into the body are oral and respiratory exposure. This review describes the various processes that may contribute to the adverse effects of MPs. Only MPs up to 5 µm were found to cross epithelial barriers to a significant extent. However, MPs may also exert a detrimental impact on human health by acting at the epithelial barrier and within the lumen of the orogastrointestinal and respiratory tract. The potential for adverse effects on human health resulting from the leaching, sorption, and desorption of chemicals, as well as the impact of MPs on nutritional status and dysbiosis, are reviewed. In vitro models are suggested as a means of (1) assessing permeation, (2) determining adverse effects on cells of the epithelial barrier, (3) examining influence of digestive fluids on leaching, desorption, and particle properties, and (4) role of microbiota-epithelial cell interactions. The contribution of these mechanisms to human health depends upon exposure levels, which unfortunately have been estimated very differently.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
微塑料微粒通过细胞损伤、释放化学物质和药物、菌群失调以及干扰营养物质的吸收,对局部和全身产生影响。
在各种环境样本(包括土壤、水、食物和空气)中都检测到了微塑料颗粒(MPs)。细胞研究和动物接触报告显示,接触由不同聚合物组成的微塑料颗粒可能会对进入人体的入口(局部)或全身(全身)造成不良影响。颗粒摄入人体的最相关途径是口腔和呼吸道接触。本综述介绍了可能导致 MPs 负面影响的各种过程。研究发现,只有 5 微米以下的微粒能在很大程度上穿过上皮屏障。不过,MPs 也可能通过作用于上皮屏障以及口腔胃肠道和呼吸道内腔而对人体健康产生不利影响。本文综述了化学品的浸出、吸附和解吸可能对人体健康造成的不利影响,以及多孔质物质对营养状况和菌群失调的影响。建议将体外模型作为以下方面的一种手段:(1) 评估渗透性;(2) 确定对上皮屏障细胞的不利影响;(3) 检查消化液对浸出、解吸和颗粒特性的影响;(4) 微生物群-上皮细胞相互作用的作用。这些机制对人体健康的影响取决于暴露水平,遗憾的是,对暴露水平的估计却大相径庭。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
13.80
自引率
6.90%
发文量
13
审稿时长
>24 weeks
期刊介绍: "Journal of Toxicology and Environmental Health: Part B - Critical Reviews" is an academic journal published by Taylor & Francis, focusing on the critical examination of research in the areas of environmental exposure and population health. With an ISSN identifier of 1093-7404, this journal has established itself as a significant source of scholarly content in the field of toxicology and environmental health. Since its inception, the journal has published over 424 articles that have garnered 35,097 citations, reflecting its impact and relevance in the scientific community. Known for its comprehensive reviews, the journal also goes by the names "Critical Reviews" and "Journal of Toxicology & Environmental Health, Part B, Critical Reviews." The journal's mission is to provide a platform for in-depth analysis and critical discussion of the latest findings in toxicology, environmental health, and related disciplines. By doing so, it contributes to the advancement of knowledge and understanding of the complex interactions between environmental factors and human health, aiding in the development of strategies to protect and improve public health.
期刊最新文献
Neuroendocrine contribution to sex-related variations in adverse air pollution health effects. Local and systemic effects of microplastic particles through cell damage, release of chemicals and drugs, dysbiosis, and interference with the absorption of nutrients. Incorporating new approach methods (NAMs) data in dose-response assessments: The future is now! In vitro models to evaluate multidrug resistance in cancer cells: Biochemical and morphological techniques and pharmacological strategies. An integrative exploration of environmental stressors on the microbiome-gut-brain axis and immune mechanisms promoting neurological disorders.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1