Functional brain connectivity changes associated with day-to-day fluctuations in affective states.

IF 2.5 3区 医学 Q2 BEHAVIORAL SCIENCES Cognitive Affective & Behavioral Neuroscience Pub Date : 2024-12-01 Epub Date: 2024-09-25 DOI:10.3758/s13415-024-01216-6
Jeanne Racicot, Salima Smine, Kamran Afzali, Pierre Orban
{"title":"Functional brain connectivity changes associated with day-to-day fluctuations in affective states.","authors":"Jeanne Racicot, Salima Smine, Kamran Afzali, Pierre Orban","doi":"10.3758/s13415-024-01216-6","DOIUrl":null,"url":null,"abstract":"<p><p>Affective neuroscience has traditionally relied on cross-sectional studies to uncover the brain correlates of affects, emotions, and moods. Such findings obfuscate intraindividual variability that may reveal meaningful changing affect states. The few functional magnetic resonance imaging longitudinal studies that have linked changes in brain function to the ebbs and flows of affective states over time have mostly investigated a single individual. In this study, we explored how the functional connectivity of brain areas associated with affective processes can explain within-person fluctuations in self-reported positive and negative affects across several subjects. To do so, we leveraged the Day2day dataset that includes 40 to 50 resting-state functional magnetic resonance imaging scans along self-reported positive and negative affectivity from a sample of six healthy participants. Sparse multivariate mixed-effect linear models could explain 15% and 11% of the within-person variation in positive and negative affective states, respectively. Evaluation of these models' generalizability to new data demonstrated the ability to predict approximately 5% and 2% of positive and negative affect variation. The functional connectivity of limbic areas, such as the amygdala, hippocampus, and insula, appeared most important to explain the temporal dynamics of affects over days, weeks, and months.</p>","PeriodicalId":50672,"journal":{"name":"Cognitive Affective & Behavioral Neuroscience","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11525411/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive Affective & Behavioral Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3758/s13415-024-01216-6","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/25 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BEHAVIORAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Affective neuroscience has traditionally relied on cross-sectional studies to uncover the brain correlates of affects, emotions, and moods. Such findings obfuscate intraindividual variability that may reveal meaningful changing affect states. The few functional magnetic resonance imaging longitudinal studies that have linked changes in brain function to the ebbs and flows of affective states over time have mostly investigated a single individual. In this study, we explored how the functional connectivity of brain areas associated with affective processes can explain within-person fluctuations in self-reported positive and negative affects across several subjects. To do so, we leveraged the Day2day dataset that includes 40 to 50 resting-state functional magnetic resonance imaging scans along self-reported positive and negative affectivity from a sample of six healthy participants. Sparse multivariate mixed-effect linear models could explain 15% and 11% of the within-person variation in positive and negative affective states, respectively. Evaluation of these models' generalizability to new data demonstrated the ability to predict approximately 5% and 2% of positive and negative affect variation. The functional connectivity of limbic areas, such as the amygdala, hippocampus, and insula, appeared most important to explain the temporal dynamics of affects over days, weeks, and months.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
与情感状态的日常波动相关的大脑功能连接变化。
情感神经科学历来依赖横断面研究来揭示情感、情绪和心境的大脑相关因素。这些研究结果掩盖了个体内部的变异性,而这种变异性可能揭示了有意义的情感状态变化。为数不多的功能磁共振成像纵向研究将大脑功能的变化与情感状态随时间的起伏联系起来,这些研究大多是针对单个个体进行的。在本研究中,我们探讨了与情感过程相关的大脑区域的功能连通性如何解释多个受试者自我报告的积极和消极情感的人际波动。为此,我们利用了 "Day2day "数据集,该数据集包括 40 到 50 个静息态功能磁共振成像扫描,以及六个健康参与者样本中自我报告的积极和消极情绪。稀疏多变量混合效应线性模型可分别解释 15% 和 11% 的积极和消极情绪状态的人内变异。通过评估这些模型对新数据的普适性,结果表明它们分别能预测约 5% 和 2% 的积极和消极情绪变化。边缘区域(如杏仁核、海马和脑岛)的功能连接似乎对解释几天、几周和几个月内的情绪时间动态最为重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.00
自引率
3.40%
发文量
64
审稿时长
6-12 weeks
期刊介绍: Cognitive, Affective, & Behavioral Neuroscience (CABN) offers theoretical, review, and primary research articles on behavior and brain processes in humans. Coverage includes normal function as well as patients with injuries or processes that influence brain function: neurological disorders, including both healthy and disordered aging; and psychiatric disorders such as schizophrenia and depression. CABN is the leading vehicle for strongly psychologically motivated studies of brain–behavior relationships, through the presentation of papers that integrate psychological theory and the conduct and interpretation of the neuroscientific data. The range of topics includes perception, attention, memory, language, problem solving, reasoning, and decision-making; emotional processes, motivation, reward prediction, and affective states; and individual differences in relevant domains, including personality. Cognitive, Affective, & Behavioral Neuroscience is a publication of the Psychonomic Society.
期刊最新文献
Correction: The effect of inter-letter spacing on the n170 during visual word recognition: An event-related potentials experiment. Use of transcranial magnetic stimulation (TMS) for studying cognitive control in depressed patients: A systematic review. Abstract task sequence initiation deficit dissociates anxiety disorders from obsessive-compulsive disorder and healthy controls. Electrodermal lability and sensorimotor preparation: effects on reaction time, contingent negative variation, and heart rate. The virtual disengagement hypothesis: A neurophysiological framework for reduced empathy on social media.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1