{"title":"Blocking TSP1 Ameliorates Diabetes Mellitus-Induced Erectile Dysfunction by Inhibiting the TGF-β/SMAD Pathway.","authors":"Mancheng Xia, Yiming Yuan, Dong Fang, Xiaohui Tan, Fangzhou Zhao, Xinfei Li, Pengchao Gao, Zhuo Zhou, Tiegui Nan, Zhongcheng Xin, Xuesong Li, Ruili Guan","doi":"10.5534/wjmh.240065","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>To examine the role and mechanism of thrombospondin-1 (TSP1) in the development of fibrosis in diabetes mellitus-induced erectile dysfunction (DMED).</p><p><strong>Materials and methods: </strong>DMED was induced by intraperitoneal streptozotocin injection. All rats were categorized into three groups: control group (n=8), DMED group (n=8) and DMED+Leu-Ser-Lys-Leu (LSKL) group (n=8). After eight weeks following the induction of diabetes mellitus, the DMED+LSKL group was subjected to intraperitoneal injections of LSKL twice weekly for four weeks. To measure intracavernous pressure (ICP), a 25-gauge needle connected to a PE tube containing heparin was inserted into the corpus cavernosum (CC). Additionally, a needle was inserted into the carotid artery to measure mean arterial pressure (MAP). Sirius red staining and Masson trichrome staining were utilized to assess CC fibrosis. Moreover, high glucose (HG)-induced CC smooth muscle cells (CCSMCs) and CC fibroblasts (CCFs) were treated with or without LSKL. Western blotting and immunofluorescence were utilized to assess the phosphorylation and expression of related proteins.</p><p><strong>Results: </strong>Compared with those in the control group, the ratio of the maximum ICP to the MAP markedly decreased in the DMED group, as did the ratio of smooth muscle to collagen and the ratio of collagen I to collagen III. These ratios were greater in the DMED+LSKL group than in the DMED group. TSP1 was highly expressed in the CC of DMED rats. <i>In vitro</i> experiments indicated that TSP1 expression significantly increased in the medium of CCSMCs and CCFs cultured in HG media and that the TGF-β pathway was activated in CCSMCs. Collagen IV was overexpressed in CCSMCs, indicating severe fibrosis was severe. Adding LSKL or knocking TSP1 down can prevent the activation of TGF-β signaling, as well as the overexpression of collagen IV in CCSMCs promoted by TSP1 secreted from CCSMCs itself or CCFs.</p><p><strong>Conclusions: </strong>TSP1 expression is increased in the CC of DMED rats. HG-induced TSP1 secretion via autocrine signaling from CCSMCs and/or paracrine signaling from CCFs to accelerate penile fibrosis. LSKL, an antagonist of TSP1, could improve erectile dysfunction by inhibiting the TGF-β/SMAD pathway.</p>","PeriodicalId":54261,"journal":{"name":"World Journal of Mens Health","volume":" ","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"World Journal of Mens Health","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.5534/wjmh.240065","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ANDROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: To examine the role and mechanism of thrombospondin-1 (TSP1) in the development of fibrosis in diabetes mellitus-induced erectile dysfunction (DMED).
Materials and methods: DMED was induced by intraperitoneal streptozotocin injection. All rats were categorized into three groups: control group (n=8), DMED group (n=8) and DMED+Leu-Ser-Lys-Leu (LSKL) group (n=8). After eight weeks following the induction of diabetes mellitus, the DMED+LSKL group was subjected to intraperitoneal injections of LSKL twice weekly for four weeks. To measure intracavernous pressure (ICP), a 25-gauge needle connected to a PE tube containing heparin was inserted into the corpus cavernosum (CC). Additionally, a needle was inserted into the carotid artery to measure mean arterial pressure (MAP). Sirius red staining and Masson trichrome staining were utilized to assess CC fibrosis. Moreover, high glucose (HG)-induced CC smooth muscle cells (CCSMCs) and CC fibroblasts (CCFs) were treated with or without LSKL. Western blotting and immunofluorescence were utilized to assess the phosphorylation and expression of related proteins.
Results: Compared with those in the control group, the ratio of the maximum ICP to the MAP markedly decreased in the DMED group, as did the ratio of smooth muscle to collagen and the ratio of collagen I to collagen III. These ratios were greater in the DMED+LSKL group than in the DMED group. TSP1 was highly expressed in the CC of DMED rats. In vitro experiments indicated that TSP1 expression significantly increased in the medium of CCSMCs and CCFs cultured in HG media and that the TGF-β pathway was activated in CCSMCs. Collagen IV was overexpressed in CCSMCs, indicating severe fibrosis was severe. Adding LSKL or knocking TSP1 down can prevent the activation of TGF-β signaling, as well as the overexpression of collagen IV in CCSMCs promoted by TSP1 secreted from CCSMCs itself or CCFs.
Conclusions: TSP1 expression is increased in the CC of DMED rats. HG-induced TSP1 secretion via autocrine signaling from CCSMCs and/or paracrine signaling from CCFs to accelerate penile fibrosis. LSKL, an antagonist of TSP1, could improve erectile dysfunction by inhibiting the TGF-β/SMAD pathway.