Mitochondrial genome analysis across different populations reveals the intraspecific variation and phylogeography of the Caucasian soft tick relapsing fever vector, Ornithodoros (Pavlovskyella) verrucosus (Ixodida: Argasidae).

IF 2.6 4区 医学 Q3 INFECTIOUS DISEASES Infection Genetics and Evolution Pub Date : 2024-09-26 DOI:10.1016/j.meegid.2024.105673
Serhii Filatov, Alexander R Kneubehl, Aparna Krishnavajhala, Giorgi Melashvili, Ana Tsitsishvili, Küşver Mamedova, Perot Saelao, Adalberto Á Pérez de León, Job E Lopez
{"title":"Mitochondrial genome analysis across different populations reveals the intraspecific variation and phylogeography of the Caucasian soft tick relapsing fever vector, Ornithodoros (Pavlovskyella) verrucosus (Ixodida: Argasidae).","authors":"Serhii Filatov, Alexander R Kneubehl, Aparna Krishnavajhala, Giorgi Melashvili, Ana Tsitsishvili, Küşver Mamedova, Perot Saelao, Adalberto Á Pérez de León, Job E Lopez","doi":"10.1016/j.meegid.2024.105673","DOIUrl":null,"url":null,"abstract":"<p><p>Territories in southern parts of Eastern Europe and in the Caucasus are endemic for tick-borne relapsing fever (TBRF), caused by Borrelia caucasica. This spirochete is transmitted exclusively by the bites of Ornithodoros verrucosus; however, the distribution and genetic diversity of the tick vector have not been explored. To address this, we performed a phylogeographic study of O. verrucosus specimens collected across a large geographic distribution. We sequenced and analyzed complete mitochondrial genomes of 54 individual O. verrucosus ticks representing 23 geographically diverse populations from Ukraine, Georgia, and Azerbaijan. We detected 47 unique haplotypes, with every collection site exhibiting distinct polymorphisms. This, along with other population genetic indices, suggests little evidence of gene flow between populations. The Bayesian coalescent analysis revealed the presence of four lineages that diverged in the Middle Pleistocene (770-126 kya). Two lineages were widespread and present in all study regions, while the other two were restricted to the southern foothills of the Lesser Caucasus mountain range. The sympatry of these ancient lineages suggests that isolation by environment, in addition to geographic distance, may play a role in the intraspecific divergence of tick populations. Using a phylogeographic approach, we provide a snapshot of genetic diversity in O. verrucosus and discuss the evolutionary history of the tick vector.</p>","PeriodicalId":54986,"journal":{"name":"Infection Genetics and Evolution","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Infection Genetics and Evolution","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.meegid.2024.105673","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INFECTIOUS DISEASES","Score":null,"Total":0}
引用次数: 0

Abstract

Territories in southern parts of Eastern Europe and in the Caucasus are endemic for tick-borne relapsing fever (TBRF), caused by Borrelia caucasica. This spirochete is transmitted exclusively by the bites of Ornithodoros verrucosus; however, the distribution and genetic diversity of the tick vector have not been explored. To address this, we performed a phylogeographic study of O. verrucosus specimens collected across a large geographic distribution. We sequenced and analyzed complete mitochondrial genomes of 54 individual O. verrucosus ticks representing 23 geographically diverse populations from Ukraine, Georgia, and Azerbaijan. We detected 47 unique haplotypes, with every collection site exhibiting distinct polymorphisms. This, along with other population genetic indices, suggests little evidence of gene flow between populations. The Bayesian coalescent analysis revealed the presence of four lineages that diverged in the Middle Pleistocene (770-126 kya). Two lineages were widespread and present in all study regions, while the other two were restricted to the southern foothills of the Lesser Caucasus mountain range. The sympatry of these ancient lineages suggests that isolation by environment, in addition to geographic distance, may play a role in the intraspecific divergence of tick populations. Using a phylogeographic approach, we provide a snapshot of genetic diversity in O. verrucosus and discuss the evolutionary history of the tick vector.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
不同种群的线粒体基因组分析揭示了高加索软蜱复发热病媒 Ornithodoros (Pavlovskyella) verrucosus(Ixodida: Argasidae)的种内变异和系统地理学。
东欧南部和高加索地区是蜱传复发性热(TBRF)的地方病流行区,该病由高加索包柔氏螺旋体(Borrelia caucasica)引起。这种螺旋体仅通过疣蜱(Ornithodoros verrucosus)的叮咬传播;然而,蜱媒的分布和遗传多样性尚未得到研究。为了解决这个问题,我们对收集到的verrucosus标本进行了系统地理学研究。我们对来自乌克兰、格鲁吉亚和阿塞拜疆的 23 个不同地理种群的 54 个 O. verrucosus 蜱个体的完整线粒体基因组进行了测序和分析。我们检测到 47 个独特的单倍型,每个采集地点都表现出独特的多态性。这一点以及其他种群遗传指数表明,种群间基因流动的证据很少。贝叶斯聚合分析显示,在中更新世(770-126 千年)出现了四个分化系。其中两个支系分布广泛,遍布所有研究地区,而另外两个支系则局限于小高加索山脉南麓。这些古老品系的共生表明,除了地理距离之外,环境隔离也可能在蜱种群的种内分化中起了作用。利用系统地理学方法,我们提供了O. verrucosus的遗传多样性快照,并讨论了蜱媒的进化史。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Infection Genetics and Evolution
Infection Genetics and Evolution 医学-传染病学
CiteScore
8.40
自引率
0.00%
发文量
215
审稿时长
82 days
期刊介绍: (aka Journal of Molecular Epidemiology and Evolutionary Genetics of Infectious Diseases -- MEEGID) Infectious diseases constitute one of the main challenges to medical science in the coming century. The impressive development of molecular megatechnologies and of bioinformatics have greatly increased our knowledge of the evolution, transmission and pathogenicity of infectious diseases. Research has shown that host susceptibility to many infectious diseases has a genetic basis. Furthermore, much is now known on the molecular epidemiology, evolution and virulence of pathogenic agents, as well as their resistance to drugs, vaccines, and antibiotics. Equally, research on the genetics of disease vectors has greatly improved our understanding of their systematics, has increased our capacity to identify target populations for control or intervention, and has provided detailed information on the mechanisms of insecticide resistance. However, the genetics and evolutionary biology of hosts, pathogens and vectors have tended to develop as three separate fields of research. This artificial compartmentalisation is of concern due to our growing appreciation of the strong co-evolutionary interactions among hosts, pathogens and vectors. Infection, Genetics and Evolution and its companion congress [MEEGID](http://www.meegidconference.com/) (for Molecular Epidemiology and Evolutionary Genetics of Infectious Diseases) are the main forum acting for the cross-fertilization between evolutionary science and biomedical research on infectious diseases. Infection, Genetics and Evolution is the only journal that welcomes articles dealing with the genetics and evolutionary biology of hosts, pathogens and vectors, and coevolution processes among them in relation to infection and disease manifestation. All infectious models enter the scope of the journal, including pathogens of humans, animals and plants, either parasites, fungi, bacteria, viruses or prions. The journal welcomes articles dealing with genetics, population genetics, genomics, postgenomics, gene expression, evolutionary biology, population dynamics, mathematical modeling and bioinformatics. We also provide many author benefits, such as free PDFs, a liberal copyright policy, special discounts on Elsevier publications and much more. Please click here for more information on our author services .
期刊最新文献
Discovery of the first sea turtle adenovirus and turtle associated circoviruses. Feline bocaviruses found in Thailand have undergone genetic recombination for their evolutions. Genetic variation and population structure of Taenia multiceps (Coenurus cerebralis) based on mitochondrial cox1 gene: A comprehensive global analysis. Genomic surveillance of dengue virus in Benin. Mitochondrial genome analysis across different populations reveals the intraspecific variation and phylogeography of the Caucasian soft tick relapsing fever vector, Ornithodoros (Pavlovskyella) verrucosus (Ixodida: Argasidae).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1