SPIDER: constructing cell-type-specific protein-protein interaction networks.

IF 2.4 Q2 MATHEMATICAL & COMPUTATIONAL BIOLOGY Bioinformatics advances Pub Date : 2024-08-30 eCollection Date: 2024-01-01 DOI:10.1093/bioadv/vbae130
Yael Kupershmidt, Simon Kasif, Roded Sharan
{"title":"SPIDER: constructing cell-type-specific protein-protein interaction networks.","authors":"Yael Kupershmidt, Simon Kasif, Roded Sharan","doi":"10.1093/bioadv/vbae130","DOIUrl":null,"url":null,"abstract":"<p><strong>Motivation: </strong>Protein-protein interactions (PPIs) play essential roles in the buildup of cellular machinery and provide the skeleton for cellular signaling. However, these biochemical roles are context dependent and interactions may change across cell type, time, and space. In contrast, PPI detection assays are run in a single condition that may not even be an endogenous condition of the organism, resulting in static networks that do not reflect full cellular complexity. Thus, there is a need for computational methods to predict cell-type-specific interactions.</p><p><strong>Results: </strong>Here we present SPIDER (Supervised Protein Interaction DEtectoR), a graph attention-based model for predicting cell-type-specific PPI networks. In contrast to previous attempts at this problem, which were unsupervised in nature, our model's training is guided by experimentally measured cell-type-specific networks, enhancing its performance. We evaluate our method using experimental data of cell-type-specific networks from both humans and mice, and show that it outperforms current approaches by a large margin. We further demonstrate the ability of our method to generalize the predictions to datasets of tissues lacking prior PPI experimental data. We leverage the networks predicted by the model to facilitate the identification of tissue-specific disease genes.</p><p><strong>Availability and implementation: </strong>Our code and data are available at https://github.com/Kuper994/SPIDER.</p>","PeriodicalId":72368,"journal":{"name":"Bioinformatics advances","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11438548/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics advances","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioadv/vbae130","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Motivation: Protein-protein interactions (PPIs) play essential roles in the buildup of cellular machinery and provide the skeleton for cellular signaling. However, these biochemical roles are context dependent and interactions may change across cell type, time, and space. In contrast, PPI detection assays are run in a single condition that may not even be an endogenous condition of the organism, resulting in static networks that do not reflect full cellular complexity. Thus, there is a need for computational methods to predict cell-type-specific interactions.

Results: Here we present SPIDER (Supervised Protein Interaction DEtectoR), a graph attention-based model for predicting cell-type-specific PPI networks. In contrast to previous attempts at this problem, which were unsupervised in nature, our model's training is guided by experimentally measured cell-type-specific networks, enhancing its performance. We evaluate our method using experimental data of cell-type-specific networks from both humans and mice, and show that it outperforms current approaches by a large margin. We further demonstrate the ability of our method to generalize the predictions to datasets of tissues lacking prior PPI experimental data. We leverage the networks predicted by the model to facilitate the identification of tissue-specific disease genes.

Availability and implementation: Our code and data are available at https://github.com/Kuper994/SPIDER.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
SPIDER:构建细胞类型特异性蛋白质-蛋白质相互作用网络。
动机蛋白质-蛋白质相互作用(PPIs)在细胞机制的构建中发挥着重要作用,并为细胞信号传导提供了骨架。然而,这些生化作用与环境有关,相互作用可能会因细胞类型、时间和空间的不同而发生变化。与此相反,PPI 检测试验是在单一条件下进行的,而这种条件甚至可能不是生物体的内源条件,因此产生的静态网络不能反映细胞的全部复杂性。因此,需要用计算方法来预测细胞类型特异性的相互作用:在这里,我们介绍了 SPIDER(监督蛋白质相互作用 DEtectoR),这是一种基于图注意的模型,用于预测细胞类型特异性 PPI 网络。与以往在此问题上的无监督尝试不同,我们的模型是在实验测量的细胞类型特异性网络的指导下进行训练的,从而提高了模型的性能。我们使用人类和小鼠细胞类型特异性网络的实验数据对我们的方法进行了评估,结果表明我们的方法大大优于目前的方法。我们进一步证明了我们的方法能够将预测结果推广到缺乏 PPI 实验数据的组织数据集。我们利用模型预测的网络来促进组织特异性疾病基因的鉴定:我们的代码和数据可从 https://github.com/Kuper994/SPIDER 获取。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
0
期刊最新文献
motifbreakR v2: expanded variant analysis including indels and integrated evidence from transcription factor binding databases. TransAnnot-a fast transcriptome annotation pipeline. PatchProt: hydrophobic patch prediction using protein foundation models. Accelerating protein-protein interaction screens with reduced AlphaFold-Multimer sampling. CAPTVRED: an automated pipeline for viral tracking and discovery from capture-based metagenomics samples.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1