Wei-Wen Lim, Jason H Leung, Chen Xie, Angelina W T Cheng, Liping Su, Luh-Nah Lum, Aishah Toh, Siew-Ching Kong, Angela M Takano, Derek J Hausenloy, Yang C Chua
{"title":"Circulating Interleukins as Biomarkers in Non-Small Cell Lung Cancer Patients: A Pilot Study Compared to Normal Individuals.","authors":"Wei-Wen Lim, Jason H Leung, Chen Xie, Angelina W T Cheng, Liping Su, Luh-Nah Lum, Aishah Toh, Siew-Ching Kong, Angela M Takano, Derek J Hausenloy, Yang C Chua","doi":"10.3390/diseases12090221","DOIUrl":null,"url":null,"abstract":"<p><p>Identifying biomarkers in non-small cell lung cancer (NSCLC) can improve diagnosis and patient stratification. We evaluated plasmas and sera for interleukins (IL)-11, IL-6, IL-8, IL-17A, and IL-33 as biomarkers in primary NSCLC patients undergoing surgical treatment against normal volunteers. Exhaled-breath condensates (EBCs), a potential source without invasive procedures, were explored in normal individuals. Due to separate recruitment criteria and intrinsic cohort differences, the NSCLC and control cohorts were not well matched for age (median age: 65 vs. 40 years; <i>p</i> < 0.0001) and smoking status (<i>p</i> = 0.0058). Interleukins were first assessed through conventional ELISA. IL-11 was elevated in NSCLC plasma compared to controls (49.71 ± 16.90 vs. 27.67 ± 14.06 pg/mL, respectively, <i>p</i> < 0.0001) but undetectable in sera and EBCs by conventional ELISA. Therefore, high-sensitivity PCR-based IL-11 ELISA was repeated, albeit with concentration discrepancies. IL11 gene and protein upregulation by RT-qPCR and immunohistochemistry, respectively, were validated in NSCLC tumors. The lack of detection sensitivity across IL-6, IL-8, IL-17A, and IL-33 suggests the need for further, precise assays. Surprisingly, biomarker concentrations can be dissimilar across paired plasmas and sera. Our results identified a need to optimize detection limits for biomarker detection and caution against over-reliance on just one form of blood sample for biomarker assessment.</p>","PeriodicalId":72832,"journal":{"name":"Diseases (Basel, Switzerland)","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11430979/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diseases (Basel, Switzerland)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/diseases12090221","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Identifying biomarkers in non-small cell lung cancer (NSCLC) can improve diagnosis and patient stratification. We evaluated plasmas and sera for interleukins (IL)-11, IL-6, IL-8, IL-17A, and IL-33 as biomarkers in primary NSCLC patients undergoing surgical treatment against normal volunteers. Exhaled-breath condensates (EBCs), a potential source without invasive procedures, were explored in normal individuals. Due to separate recruitment criteria and intrinsic cohort differences, the NSCLC and control cohorts were not well matched for age (median age: 65 vs. 40 years; p < 0.0001) and smoking status (p = 0.0058). Interleukins were first assessed through conventional ELISA. IL-11 was elevated in NSCLC plasma compared to controls (49.71 ± 16.90 vs. 27.67 ± 14.06 pg/mL, respectively, p < 0.0001) but undetectable in sera and EBCs by conventional ELISA. Therefore, high-sensitivity PCR-based IL-11 ELISA was repeated, albeit with concentration discrepancies. IL11 gene and protein upregulation by RT-qPCR and immunohistochemistry, respectively, were validated in NSCLC tumors. The lack of detection sensitivity across IL-6, IL-8, IL-17A, and IL-33 suggests the need for further, precise assays. Surprisingly, biomarker concentrations can be dissimilar across paired plasmas and sera. Our results identified a need to optimize detection limits for biomarker detection and caution against over-reliance on just one form of blood sample for biomarker assessment.