Andy Y.L. Gao , Yanis Inglebert , Roy Shi , Alina Ilie , Jelena Popic , Jamie Mustian , Nahum Sonenberg , John Orlowski , R. Anne McKinney
{"title":"Impaired hippocampal plasticity associated with loss of recycling endosomal SLC9A6/NHE6 is ameliorated by the TrkB agonist 7,8-dihydroxyflavone","authors":"Andy Y.L. Gao , Yanis Inglebert , Roy Shi , Alina Ilie , Jelena Popic , Jamie Mustian , Nahum Sonenberg , John Orlowski , R. Anne McKinney","doi":"10.1016/j.bbadis.2024.167529","DOIUrl":null,"url":null,"abstract":"<div><div>Proper maintenance of intracellular vesicular pH is essential for cargo trafficking during synaptic function and plasticity. Mutations in the <em>SLC9A6</em> gene encoding the recycling endosomal pH regulator (Na<sup>+</sup>, K<sup>+</sup>)/H<sup>+</sup> exchanger isoform 6 (NHE6) are causal for Christianson syndrome (CS), a severe form of X-linked intellectual disability. NHE6 expression is also downregulated in other neurodevelopmental and neurodegenerative disorders, such as autism spectrum disorder and Alzheimer's disease, suggesting its dysfunction could contribute more broadly to the pathophysiology of other neurological conditions. To understand how ablation of NHE6 function leads to severe learning impairments, we assessed synaptic structure, function, and cellular mechanisms of learning in a novel line of <em>Nhe6</em> knockout (KO) mice expressing a plasma membrane-tethered green fluorescent protein within hippocampal neurons. We uncovered significant reductions in dendritic spine<del>s</del> density, AMPA receptor (AMPAR) expression, and AMPAR-mediated neurotransmission in CA1 pyramidal neurons. The neurons also failed to undergo functional and structural enhancement during long-term potentiation (LTP). Significantly, the selective TrkB agonist 7,8-dihydroxyflavone restored spine density as well as functional and structural LTP in KO neurons. TrkB activation thus may act as a potential clinical intervention to ameliorate cognitive deficits in CS and other neurodegenerative disorders.</div></div>","PeriodicalId":8821,"journal":{"name":"Biochimica et biophysica acta. Molecular basis of disease","volume":"1871 1","pages":"Article 167529"},"PeriodicalIF":4.2000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochimica et biophysica acta. Molecular basis of disease","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925443924005234","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Proper maintenance of intracellular vesicular pH is essential for cargo trafficking during synaptic function and plasticity. Mutations in the SLC9A6 gene encoding the recycling endosomal pH regulator (Na+, K+)/H+ exchanger isoform 6 (NHE6) are causal for Christianson syndrome (CS), a severe form of X-linked intellectual disability. NHE6 expression is also downregulated in other neurodevelopmental and neurodegenerative disorders, such as autism spectrum disorder and Alzheimer's disease, suggesting its dysfunction could contribute more broadly to the pathophysiology of other neurological conditions. To understand how ablation of NHE6 function leads to severe learning impairments, we assessed synaptic structure, function, and cellular mechanisms of learning in a novel line of Nhe6 knockout (KO) mice expressing a plasma membrane-tethered green fluorescent protein within hippocampal neurons. We uncovered significant reductions in dendritic spines density, AMPA receptor (AMPAR) expression, and AMPAR-mediated neurotransmission in CA1 pyramidal neurons. The neurons also failed to undergo functional and structural enhancement during long-term potentiation (LTP). Significantly, the selective TrkB agonist 7,8-dihydroxyflavone restored spine density as well as functional and structural LTP in KO neurons. TrkB activation thus may act as a potential clinical intervention to ameliorate cognitive deficits in CS and other neurodegenerative disorders.
期刊介绍:
BBA Molecular Basis of Disease addresses the biochemistry and molecular genetics of disease processes and models of human disease. This journal covers aspects of aging, cancer, metabolic-, neurological-, and immunological-based disease. Manuscripts focused on using animal models to elucidate biochemical and mechanistic insight in each of these conditions, are particularly encouraged. Manuscripts should emphasize the underlying mechanisms of disease pathways and provide novel contributions to the understanding and/or treatment of these disorders. Highly descriptive and method development submissions may be declined without full review. The submission of uninvited reviews to BBA - Molecular Basis of Disease is strongly discouraged, and any such uninvited review should be accompanied by a coverletter outlining the compelling reasons why the review should be considered.