Neural Memory State Space Models for Medical Image Segmentation.

International journal of neural systems Pub Date : 2025-01-01 Epub Date: 2024-09-30 DOI:10.1142/S0129065724500680
Zhihua Wang, Jingjun Gu, Wang Zhou, Quansong He, Tianli Zhao, Jialong Guo, Li Lu, Tao He, Jiajun Bu
{"title":"Neural Memory State Space Models for Medical Image Segmentation.","authors":"Zhihua Wang, Jingjun Gu, Wang Zhou, Quansong He, Tianli Zhao, Jialong Guo, Li Lu, Tao He, Jiajun Bu","doi":"10.1142/S0129065724500680","DOIUrl":null,"url":null,"abstract":"<p><p>With the rapid advancement of deep learning, computer-aided diagnosis and treatment have become crucial in medicine. UNet is a widely used architecture for medical image segmentation, and various methods for improving UNet have been extensively explored. One popular approach is incorporating transformers, though their quadratic computational complexity poses challenges. Recently, State-Space Models (SSMs), exemplified by Mamba, have gained significant attention as a promising alternative due to their linear computational complexity. Another approach, neural memory Ordinary Differential Equations (nmODEs), exhibits similar principles and achieves good results. In this paper, we explore the respective strengths and weaknesses of nmODEs and SSMs and propose a novel architecture, the nmSSM decoder, which combines the advantages of both approaches. This architecture possesses powerful nonlinear representation capabilities while retaining the ability to preserve input and process global information. We construct nmSSM-UNet using the nmSSM decoder and conduct comprehensive experiments on the PH2, ISIC2018, and BU-COCO datasets to validate its effectiveness in medical image segmentation. The results demonstrate the promising application value of nmSSM-UNet. Additionally, we conducted ablation experiments to verify the effectiveness of our proposed improvements on SSMs and nmODEs.</p>","PeriodicalId":94052,"journal":{"name":"International journal of neural systems","volume":" ","pages":"2450068"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of neural systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S0129065724500680","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/30 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

With the rapid advancement of deep learning, computer-aided diagnosis and treatment have become crucial in medicine. UNet is a widely used architecture for medical image segmentation, and various methods for improving UNet have been extensively explored. One popular approach is incorporating transformers, though their quadratic computational complexity poses challenges. Recently, State-Space Models (SSMs), exemplified by Mamba, have gained significant attention as a promising alternative due to their linear computational complexity. Another approach, neural memory Ordinary Differential Equations (nmODEs), exhibits similar principles and achieves good results. In this paper, we explore the respective strengths and weaknesses of nmODEs and SSMs and propose a novel architecture, the nmSSM decoder, which combines the advantages of both approaches. This architecture possesses powerful nonlinear representation capabilities while retaining the ability to preserve input and process global information. We construct nmSSM-UNet using the nmSSM decoder and conduct comprehensive experiments on the PH2, ISIC2018, and BU-COCO datasets to validate its effectiveness in medical image segmentation. The results demonstrate the promising application value of nmSSM-UNet. Additionally, we conducted ablation experiments to verify the effectiveness of our proposed improvements on SSMs and nmODEs.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于医学图像分割的神经记忆状态空间模型
随着深度学习的快速发展,计算机辅助诊断和治疗已成为医学领域的关键。UNet 是一种广泛应用于医学图像分割的架构,人们广泛探索了各种改进 UNet 的方法。其中一种流行的方法是加入变换器,但其二次计算复杂性带来了挑战。最近,以 Mamba 为代表的状态空间模型(SSM)因其线性计算复杂度而作为一种有前途的替代方法受到广泛关注。另一种方法,即神经记忆常微分方程(nmODEs),也表现出类似的原理,并取得了良好的效果。在本文中,我们探讨了 nmODE 和 SSM 各自的优缺点,并提出了一种新型架构 nmSSM 解码器,它结合了两种方法的优点。该架构具有强大的非线性表示能力,同时保留了保留输入和处理全局信息的能力。我们利用 nmSSM 解码器构建了 nmSSM-UNet,并在 PH2、ISIC2018 和 BU-COCO 数据集上进行了全面实验,以验证其在医学图像分割中的有效性。实验结果证明了 nmSSM-UNet 的应用价值。此外,我们还进行了消融实验,以验证我们提出的改进在 SSM 和 nmODE 上的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Neural Memory State Space Models for Medical Image Segmentation. Spatially Selective Retinal Ganglion Cell Activation Using Low Invasive Extraocular Temporal Interference Stimulation. Decoding Continuous Tracking Eye Movements from Cortical Spiking Activity. Deep Learning Recognition of Paroxysmal Kinesigenic Dyskinesia Based on EEG Functional Connectivity. Enhancing Motor Imagery Classification with Residual Graph Convolutional Networks and Multi-Feature Fusion.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1