Transcription Factor Engineering in Aspergillus nidulans Leads to the Discovery of an Orsellinaldehyde Derivative Produced via an Unlinked Polyketide Synthase Gene.
Chris Rabot, Michelle F Grau, Ruth Entwistle, Yi-Ming Chiang, Yamilex Zamora de Roberts, Manmeet Ahuja, C Elizabeth Oakley, Clay C C Wang, Richard B Todd, Berl R Oakley
{"title":"Transcription Factor Engineering in <i>Aspergillus nidulans</i> Leads to the Discovery of an Orsellinaldehyde Derivative Produced via an Unlinked Polyketide Synthase Gene.","authors":"Chris Rabot, Michelle F Grau, Ruth Entwistle, Yi-Ming Chiang, Yamilex Zamora de Roberts, Manmeet Ahuja, C Elizabeth Oakley, Clay C C Wang, Richard B Todd, Berl R Oakley","doi":"10.1021/acs.jnatprod.4c00483","DOIUrl":null,"url":null,"abstract":"<p><p>Secondary metabolites are generally produced by enzymes encoded by genes within a biosynthetic gene cluster. Transcription factor genes are frequently located within these gene clusters. These transcription factors often drive expression of the other genes of the biosynthetic gene cluster, and overexpression of the transcription factor provides a facile approach to express all genes within a gene cluster, resulting in production of downstream metabolite(s). Unfortunately this approach is not always successful, leading us to engineer more effective hybrid transcription factors. Herein, we attempted to activate a putative cryptic biosynthetic gene cluster in <i>Aspergillus nidulans</i> using a combination of transcription factor engineering and overexpression approaches. This resulted in the discovery of a novel secondary metabolite we term triorsellinaldehyde. Surprisingly, deletion of the polyketide synthase gene within the gene cluster did not prevent triorsellinaldehyde production. However, targeted deletion of a polyketide synthase gene elsewhere in the genome revealed its role in triorsellinaldehyde biosynthesis.</p>","PeriodicalId":47,"journal":{"name":"Journal of Natural Products ","volume":" ","pages":"2384-2392"},"PeriodicalIF":3.3000,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Natural Products ","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1021/acs.jnatprod.4c00483","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/27 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Secondary metabolites are generally produced by enzymes encoded by genes within a biosynthetic gene cluster. Transcription factor genes are frequently located within these gene clusters. These transcription factors often drive expression of the other genes of the biosynthetic gene cluster, and overexpression of the transcription factor provides a facile approach to express all genes within a gene cluster, resulting in production of downstream metabolite(s). Unfortunately this approach is not always successful, leading us to engineer more effective hybrid transcription factors. Herein, we attempted to activate a putative cryptic biosynthetic gene cluster in Aspergillus nidulans using a combination of transcription factor engineering and overexpression approaches. This resulted in the discovery of a novel secondary metabolite we term triorsellinaldehyde. Surprisingly, deletion of the polyketide synthase gene within the gene cluster did not prevent triorsellinaldehyde production. However, targeted deletion of a polyketide synthase gene elsewhere in the genome revealed its role in triorsellinaldehyde biosynthesis.
期刊介绍:
The Journal of Natural Products invites and publishes papers that make substantial and scholarly contributions to the area of natural products research. Contributions may relate to the chemistry and/or biochemistry of naturally occurring compounds or the biology of living systems from which they are obtained.
Specifically, there may be articles that describe secondary metabolites of microorganisms, including antibiotics and mycotoxins; physiologically active compounds from terrestrial and marine plants and animals; biochemical studies, including biosynthesis and microbiological transformations; fermentation and plant tissue culture; the isolation, structure elucidation, and chemical synthesis of novel compounds from nature; and the pharmacology of compounds of natural origin.
When new compounds are reported, manuscripts describing their biological activity are much preferred.
Specifically, there may be articles that describe secondary metabolites of microorganisms, including antibiotics and mycotoxins; physiologically active compounds from terrestrial and marine plants and animals; biochemical studies, including biosynthesis and microbiological transformations; fermentation and plant tissue culture; the isolation, structure elucidation, and chemical synthesis of novel compounds from nature; and the pharmacology of compounds of natural origin.