Viral capsid structural assembly governs the reovirus binding interface to NgR1†

IF 8 2区 材料科学 Q1 CHEMISTRY, PHYSICAL Nanoscale Horizons Pub Date : 2024-09-30 DOI:10.1039/D4NH00315B
Rita dos Santos Natividade, Andra C. Dumitru, Alessandro Nicoli, Michael Strebl, Danica M. Sutherland, Olivia L. Welsh, Mustafa Ghulam, Thilo Stehle, Terence S. Dermody, Antonella Di Pizio, Melanie Koehler and David Alsteens
{"title":"Viral capsid structural assembly governs the reovirus binding interface to NgR1†","authors":"Rita dos Santos Natividade, Andra C. Dumitru, Alessandro Nicoli, Michael Strebl, Danica M. Sutherland, Olivia L. Welsh, Mustafa Ghulam, Thilo Stehle, Terence S. Dermody, Antonella Di Pizio, Melanie Koehler and David Alsteens","doi":"10.1039/D4NH00315B","DOIUrl":null,"url":null,"abstract":"<p >Understanding the mechanisms underlying viral entry is crucial for controlling viral diseases. In this study, we investigated the interactions between reovirus and Nogo-receptor 1 (NgR1), a key mediator of reovirus entry into the host central nervous system. NgR1 exhibits a unique bivalent interaction with the reovirus capsid, specifically binding at the interface between adjacent heterohexamers arranged in a precise structural pattern on the curved virus surface. Using single-molecule techniques, we explored for the first time how the capsid molecular architecture and receptor polymorphism influence virus binding. We compared the binding affinities of human and mouse NgR1 to reovirus μ1/σ3 proteins in their isolated form, self-assembled in 2D capsid patches, and within the native 3D viral topology. Our results underscore the essential role of the concave side of NgR1 and emphasize that the spatial organization and curvature of the virus are critical determinants of the stability of the reovirus–NgR1 complex. This study highlights the importance of characterizing interactions in physiologically relevant spatial configurations, providing precise insights into virus–host interactions and opening new avenues for therapeutic interventions against viral infections.</p>","PeriodicalId":93,"journal":{"name":"Nanoscale Horizons","volume":" 11","pages":" 1925-1937"},"PeriodicalIF":8.0000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11441417/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale Horizons","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/nh/d4nh00315b","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Understanding the mechanisms underlying viral entry is crucial for controlling viral diseases. In this study, we investigated the interactions between reovirus and Nogo-receptor 1 (NgR1), a key mediator of reovirus entry into the host central nervous system. NgR1 exhibits a unique bivalent interaction with the reovirus capsid, specifically binding at the interface between adjacent heterohexamers arranged in a precise structural pattern on the curved virus surface. Using single-molecule techniques, we explored for the first time how the capsid molecular architecture and receptor polymorphism influence virus binding. We compared the binding affinities of human and mouse NgR1 to reovirus μ1/σ3 proteins in their isolated form, self-assembled in 2D capsid patches, and within the native 3D viral topology. Our results underscore the essential role of the concave side of NgR1 and emphasize that the spatial organization and curvature of the virus are critical determinants of the stability of the reovirus–NgR1 complex. This study highlights the importance of characterizing interactions in physiologically relevant spatial configurations, providing precise insights into virus–host interactions and opening new avenues for therapeutic interventions against viral infections.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
病毒囊结构组装决定了再病毒与 NgR1 的结合界面。
了解病毒进入的基本机制对于控制病毒性疾病至关重要。在这项研究中,我们研究了雷诺病毒与Nogo-受体1(NgR1)之间的相互作用,NgR1是雷诺病毒进入宿主中枢神经系统的关键介质。NgR1 与雷诺病毒囊膜表现出独特的二价相互作用,特别是在相邻的杂六聚体之间的界面上结合,这些杂六聚体以精确的结构模式排列在弯曲的病毒表面上。利用单分子技术,我们首次探究了囊膜分子结构和受体多态性如何影响病毒结合。我们比较了人和小鼠 NgR1 与分离形式、自组装在二维荚膜斑块中以及在原生三维病毒拓扑结构中的雷诺病毒 μ1/σ3 蛋白的结合亲和力。我们的研究结果突出了 NgR1 凹面的重要作用,并强调病毒的空间组织和曲率是决定再病毒-NgR1 复合物稳定性的关键因素。这项研究强调了在生理相关的空间构型中描述相互作用的重要性,为病毒与宿主的相互作用提供了精确的见解,并为针对病毒感染的治疗干预开辟了新的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nanoscale Horizons
Nanoscale Horizons Materials Science-General Materials Science
CiteScore
16.30
自引率
1.00%
发文量
141
期刊介绍: Nanoscale Horizons stands out as a premier journal for publishing exceptionally high-quality and innovative nanoscience and nanotechnology. The emphasis lies on original research that introduces a new concept or a novel perspective (a conceptual advance), prioritizing this over reporting technological improvements. Nevertheless, outstanding articles showcasing truly groundbreaking developments, including record-breaking performance, may also find a place in the journal. Published work must be of substantial general interest to our broad and diverse readership across the nanoscience and nanotechnology community.
期刊最新文献
Achieving neuronal dynamics with spike encoding and spatial-temporal summation in vanadium-based threshold switching memristor for asynchronous signal integration. Record-high hyperpolarizabilities in atomically precise single metal-doped silver nanoclusters. Revolutionizing healthcare: inorganic medicinal nanoarchitectonics for advanced theranostics. Molecular-scale in-operando reconfigurable electronic hardware. Reflecting on Nanoscale Horizons in 2024.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1