{"title":"Recent development of nanomaterials-based PDT to improve immunogenic cell death.","authors":"Qura Tul Ain","doi":"10.1007/s43630-024-00638-y","DOIUrl":null,"url":null,"abstract":"<p><p>Photodynamic therapy (PDT) is a clinically approved therapeutic modality for treating oncological and non-oncological disorders. PDT has proclaimed multiple benefits over further traditional cancer therapies including its minimal systemic toxicity and selective ability to eliminate irradiated tumors. In PDT, a photosensitizing substance localizes in tumor tissues and becomes active when exposed to a particular wavelength of laser light. This produces reactive oxygen species (ROS), which induce neoplastic cells to die and lead to the regression of tumors. The contributions of ROS to PDT-induced tumor destruction are described by three basic processes including direct or indirect cell death, vascular destruction, and immunogenic cell death. However, the efficiency of PDT is significantly limited by the inherent nature and tumor microenvironment. Combining immunotherapy with PDT has recently been shown to improve tumor immunogenicity while decreasing immunoregulatory repression, thereby gently modifying the anticancer immune response with long-term immunological memory effects. This review highlights the fundamental ideas, essential elements, and mechanisms of PDT as well as nanomaterial-based PDT to boost tumor immunogenicity. Moreover, the synergistic use of immunotherapy in combination with PDT to enhance immune responses against tumors is emphasized.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":" ","pages":"1983-1998"},"PeriodicalIF":4.6000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s43630-024-00638-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/25 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Photodynamic therapy (PDT) is a clinically approved therapeutic modality for treating oncological and non-oncological disorders. PDT has proclaimed multiple benefits over further traditional cancer therapies including its minimal systemic toxicity and selective ability to eliminate irradiated tumors. In PDT, a photosensitizing substance localizes in tumor tissues and becomes active when exposed to a particular wavelength of laser light. This produces reactive oxygen species (ROS), which induce neoplastic cells to die and lead to the regression of tumors. The contributions of ROS to PDT-induced tumor destruction are described by three basic processes including direct or indirect cell death, vascular destruction, and immunogenic cell death. However, the efficiency of PDT is significantly limited by the inherent nature and tumor microenvironment. Combining immunotherapy with PDT has recently been shown to improve tumor immunogenicity while decreasing immunoregulatory repression, thereby gently modifying the anticancer immune response with long-term immunological memory effects. This review highlights the fundamental ideas, essential elements, and mechanisms of PDT as well as nanomaterial-based PDT to boost tumor immunogenicity. Moreover, the synergistic use of immunotherapy in combination with PDT to enhance immune responses against tumors is emphasized.