Tunable Anomalous Hall Effect in a Kagomé Ferromagnetic Weyl Semimetal.

IF 14.3 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Advanced Science Pub Date : 2024-09-26 DOI:10.1002/advs.202406882
Samuel E Pate, Bin Wang, Yang Zhang, Bing Shen, Enke Liu, Ivar Martin, J Samuel Jiang, Xiuquan Zhou, Duck Young Chung, Mercouri G Kanatzidis, Ulrich Welp, Wai-Kwong Kwok, Zhi-Li Xiao
{"title":"Tunable Anomalous Hall Effect in a Kagomé Ferromagnetic Weyl Semimetal.","authors":"Samuel E Pate, Bin Wang, Yang Zhang, Bing Shen, Enke Liu, Ivar Martin, J Samuel Jiang, Xiuquan Zhou, Duck Young Chung, Mercouri G Kanatzidis, Ulrich Welp, Wai-Kwong Kwok, Zhi-Li Xiao","doi":"10.1002/advs.202406882","DOIUrl":null,"url":null,"abstract":"<p><p>Emerging from the intricate interplay of topology and magnetism, the giant anomalous Hall effect (AHE) is the most known topological property of the recently discovered kagomé ferromagnetic Weyl semimetal Co<sub>3</sub>Sn<sub>2</sub>S<sub>2</sub> with the magnetic Co atoms arranged on a kagomé lattice. Here it is reported that the AHE in Co<sub>3</sub>Sn<sub>2</sub>S<sub>2</sub> can be fine-tuned by an applied magnetic field orientated within ≈2° of the kagomé plane, while beyond this regime, it stays unchanged. Particularly, it can vanish in magnetic fields parallel to the kagomé plane and even decrease in magnetic fields collinear with the spin direction. This tunable AHE can be attributed to local spin switching enabled by the geometrical frustration of the magnetic kagomé lattice, revealing that spins in a kagomé ferromagnet change their switching behavior as the magnetic field approaches the kagomé plane. These results also suggest a versatile way to tune the properties of a kagomé magnet.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":null,"pages":null},"PeriodicalIF":14.3000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/advs.202406882","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Emerging from the intricate interplay of topology and magnetism, the giant anomalous Hall effect (AHE) is the most known topological property of the recently discovered kagomé ferromagnetic Weyl semimetal Co3Sn2S2 with the magnetic Co atoms arranged on a kagomé lattice. Here it is reported that the AHE in Co3Sn2S2 can be fine-tuned by an applied magnetic field orientated within ≈2° of the kagomé plane, while beyond this regime, it stays unchanged. Particularly, it can vanish in magnetic fields parallel to the kagomé plane and even decrease in magnetic fields collinear with the spin direction. This tunable AHE can be attributed to local spin switching enabled by the geometrical frustration of the magnetic kagomé lattice, revealing that spins in a kagomé ferromagnet change their switching behavior as the magnetic field approaches the kagomé plane. These results also suggest a versatile way to tune the properties of a kagomé magnet.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
卡戈梅铁磁性韦尔半金属中的可调谐反常霍尔效应
巨型反常霍尔效应(AHE)产生于拓扑学和磁学的复杂相互作用,是最近发现的卡戈梅铁磁性韦尔半金属 Co3Sn2S2 最为人熟知的拓扑特性,其磁性 Co 原子排列在卡戈梅晶格上。据报道,Co3Sn2S2 中的 AHE 可通过在卡戈美平面 ≈2° 范围内施加磁场进行微调,而在此范围之外则保持不变。特别是,在与卡戈美平面平行的磁场中,它可以消失,甚至在与自旋方向平行的磁场中会减弱。这种可调的 AHE 可归因于磁性卡戈梅晶格的几何挫折带来的局部自旋切换,揭示了当磁场接近卡戈梅平面时,卡戈梅铁磁体中的自旋会改变其切换行为。这些结果还提出了一种调节卡戈梅磁体特性的多功能方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Science
Advanced Science CHEMISTRY, MULTIDISCIPLINARYNANOSCIENCE &-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
18.90
自引率
2.60%
发文量
1602
审稿时长
1.9 months
期刊介绍: Advanced Science is a prestigious open access journal that focuses on interdisciplinary research in materials science, physics, chemistry, medical and life sciences, and engineering. The journal aims to promote cutting-edge research by employing a rigorous and impartial review process. It is committed to presenting research articles with the highest quality production standards, ensuring maximum accessibility of top scientific findings. With its vibrant and innovative publication platform, Advanced Science seeks to revolutionize the dissemination and organization of scientific knowledge.
期刊最新文献
A CC-NB-ARC-LRR Gene Regulates Bract Morphology in Cotton. From Small Data Modeling to Large Language Model Screening: A Dual-Strategy Framework for Materials Intelligent Design. Genome-Wide Profiling of H3K27ac Identifies TDO2 as a Pivotal Therapeutic Target in Metabolic Associated Steatohepatitis Liver Disease. Surface Optimization of Noble-Metal-Free Conductive [Mn1/4Co1/2Ni1/4]O2 Nanosheets for Boosting Their Efficacy as Hybridization Matrices. The eATP/P2×7R Axis Drives Quantum Dot-Nanoparticle Induced Neutrophil Recruitment in the Pulmonary Microcirculation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1