{"title":"Chiral Pd(II) Nanofiber Promoting Electron Transfer of g-C<sub>3</sub>N<sub>4</sub> for Efficient Photocatalytic Hydrogen Production.","authors":"Xiaoqin Zhou, Wangen Miao, Limei Xu, Jin Luo, Xuliang Fan, Xiaomei Ning, Xunfu Zhou, Xiaosong Zhou","doi":"10.1002/chem.202402665","DOIUrl":null,"url":null,"abstract":"<p><p>The rapid transfer and separation of photogenerated electrons is very important for the improvement of photocatalytic efficiency. Here, chiral induced spin selectivity effect (CISS effect) was developed to accelerate electron transfer for efficient photocatalytic hydrogen production. A chiral and achiral racemic supramolecular Pd(II) complex nanofiber was fabricated via supramolecular self-assembly of chiral L-Py or its racemes with Pd(II) and used to modify carbon nitride (g-C<sub>3</sub>N<sub>4</sub>). The obtained chiral photocatalyst L-Py-Pd/g-C<sub>3</sub>N<sub>4</sub>-4 and achiral photocatalyst Rac-Pd/g-C<sub>3</sub>N<sub>4</sub>-4, show enhanced photocatalytic activities with hydrogen evolution rates of 2476 and 1339 μmol g<sup>-1</sup> h<sup>-1</sup>, respectively, while that of pure g-C<sub>3</sub>N<sub>4</sub> is 30.5 μmol g<sup>-1</sup> h<sup>-1</sup>. Chiral photocatalyst has 85 % higher activity than achiral one and is 82.5-fold of pure g-C<sub>3</sub>N<sub>4</sub>, due to better suppression of the recombination of photogenerated electron-hole pairs in the interface of g-C<sub>3</sub>N<sub>4</sub> contact with chiral molecule. Spectral tests and photoelectrochemical tests proved that the chiral supramolecular Pd(II) complex can act both as an electron spin filter and hydrogen reduction catalytic center to enhance photocatalytic efficiency. This work offers a new route to facilitate electron transfer by the CISS effect for photocatalytic hydrogen evolution.</p>","PeriodicalId":144,"journal":{"name":"Chemistry - A European Journal","volume":" ","pages":"e202402665"},"PeriodicalIF":3.9000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry - A European Journal","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/chem.202402665","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/5 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The rapid transfer and separation of photogenerated electrons is very important for the improvement of photocatalytic efficiency. Here, chiral induced spin selectivity effect (CISS effect) was developed to accelerate electron transfer for efficient photocatalytic hydrogen production. A chiral and achiral racemic supramolecular Pd(II) complex nanofiber was fabricated via supramolecular self-assembly of chiral L-Py or its racemes with Pd(II) and used to modify carbon nitride (g-C3N4). The obtained chiral photocatalyst L-Py-Pd/g-C3N4-4 and achiral photocatalyst Rac-Pd/g-C3N4-4, show enhanced photocatalytic activities with hydrogen evolution rates of 2476 and 1339 μmol g-1 h-1, respectively, while that of pure g-C3N4 is 30.5 μmol g-1 h-1. Chiral photocatalyst has 85 % higher activity than achiral one and is 82.5-fold of pure g-C3N4, due to better suppression of the recombination of photogenerated electron-hole pairs in the interface of g-C3N4 contact with chiral molecule. Spectral tests and photoelectrochemical tests proved that the chiral supramolecular Pd(II) complex can act both as an electron spin filter and hydrogen reduction catalytic center to enhance photocatalytic efficiency. This work offers a new route to facilitate electron transfer by the CISS effect for photocatalytic hydrogen evolution.
期刊介绍:
Chemistry—A European Journal is a truly international journal with top quality contributions (2018 ISI Impact Factor: 5.16). It publishes a wide range of outstanding Reviews, Minireviews, Concepts, Full Papers, and Communications from all areas of chemistry and related fields.
Based in Europe Chemistry—A European Journal provides an excellent platform for increasing the visibility of European chemistry as well as for featuring the best research from authors from around the world.
All manuscripts are peer-reviewed, and electronic processing ensures accurate reproduction of text and data, plus short publication times.
The Concepts section provides nonspecialist readers with a useful conceptual guide to unfamiliar areas and experts with new angles on familiar problems.
Chemistry—A European Journal is published on behalf of ChemPubSoc Europe, a group of 16 national chemical societies from within Europe, and supported by the Asian Chemical Editorial Societies. The ChemPubSoc Europe family comprises: Angewandte Chemie, Chemistry—A European Journal, European Journal of Organic Chemistry, European Journal of Inorganic Chemistry, ChemPhysChem, ChemBioChem, ChemMedChem, ChemCatChem, ChemSusChem, ChemPlusChem, ChemElectroChem, and ChemistryOpen.