Spotlight on HIV-derived TAT peptide as a molecular shuttle in drug delivery

IF 6.5 2区 医学 Q1 PHARMACOLOGY & PHARMACY Drug Discovery Today Pub Date : 2024-09-24 DOI:10.1016/j.drudis.2024.104191
{"title":"Spotlight on HIV-derived TAT peptide as a molecular shuttle in drug delivery","authors":"","doi":"10.1016/j.drudis.2024.104191","DOIUrl":null,"url":null,"abstract":"<div><div>HIV-derived TAT peptide, with a high penetration rate into cells and its nonimmunogenic and minimally toxic nature, is an attractive tool for enhancing the biodistribution of drugs and their systemic administration. Despite the presence of numerous promising preclinical investigations illustrating its capability to specifically target distinct tissues and deliver a diverse range of pharmacological agents, the efficacy of various clinical trials incorporating TAT has been impeded by several considerable obstacles. Hence, there is much need for an in-depth investigation concerning the application of TAT in drug delivery mechanisms. In this review, we have elucidated the structure of TAT and its utility in the proficient delivery of various types of bioactive molecules.</div></div>","PeriodicalId":301,"journal":{"name":"Drug Discovery Today","volume":null,"pages":null},"PeriodicalIF":6.5000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Discovery Today","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359644624003167","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

HIV-derived TAT peptide, with a high penetration rate into cells and its nonimmunogenic and minimally toxic nature, is an attractive tool for enhancing the biodistribution of drugs and their systemic administration. Despite the presence of numerous promising preclinical investigations illustrating its capability to specifically target distinct tissues and deliver a diverse range of pharmacological agents, the efficacy of various clinical trials incorporating TAT has been impeded by several considerable obstacles. Hence, there is much need for an in-depth investigation concerning the application of TAT in drug delivery mechanisms. In this review, we have elucidated the structure of TAT and its utility in the proficient delivery of various types of bioactive molecules.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
聚焦作为药物输送分子穿梭器的艾滋病毒衍生 TAT 肽。
艾滋病病毒衍生的 TAT 肽具有较高的细胞渗透率、非免疫原性和毒性小的特点,是增强药物生物分布和全身用药的一种极具吸引力的工具。尽管有大量前景看好的临床前研究表明,TAT 能够特异性地靶向不同的组织,并递送各种药剂,但采用 TAT 进行的各种临床试验的疗效一直受到一些重大障碍的阻碍。因此,亟需对 TAT 在给药机制中的应用进行深入研究。在这篇综述中,我们阐明了 TAT 的结构及其在熟练递送各类生物活性分子方面的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Drug Discovery Today
Drug Discovery Today 医学-药学
CiteScore
14.80
自引率
2.70%
发文量
293
审稿时长
6 months
期刊介绍: Drug Discovery Today delivers informed and highly current reviews for the discovery community. The magazine addresses not only the rapid scientific developments in drug discovery associated technologies but also the management, commercial and regulatory issues that increasingly play a part in how R&D is planned, structured and executed. Features include comment by international experts, news and analysis of important developments, reviews of key scientific and strategic issues, overviews of recent progress in specific therapeutic areas and conference reports.
期刊最新文献
Polybodies: Next-generation clinical antibodies. 3D light-sheet fluorescence microscopy in preclinical and clinical drug discovery. Heat shock protein 110: A novel candidate for disease diagnosis and targeted therapy. Which cryptic sites are feasible drug targets? Data-driven toxicity prediction in drug discovery: Current status and future directions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1