Heba A. Abou-Taleb, Mohamed S. Mohamed, Gamal M. Zayed, Lamiaa N. Abdelaty, Mahmoud A. Makki, Hazem L. Abdel-Aleem, Mohamed A. El-Mokhtar, Helal F. Hetta, Nidaa Abdullah, Mohammed S. Saddik
{"title":"HPMC-Zein Film-forming Gel Loaded with 5-Fluorouracil Coupled with CO2 Laser Dermabrasion for Managing Stable Vitiligo","authors":"Heba A. Abou-Taleb, Mohamed S. Mohamed, Gamal M. Zayed, Lamiaa N. Abdelaty, Mahmoud A. Makki, Hazem L. Abdel-Aleem, Mohamed A. El-Mokhtar, Helal F. Hetta, Nidaa Abdullah, Mohammed S. Saddik","doi":"10.1208/s12249-024-02937-0","DOIUrl":null,"url":null,"abstract":"<div><p>Vitiligo is a significant dermatological challenge affecting 0.5 to 2% of the global population. Despite the various existing medical approaches, current vitiligo treatments are far from ideal. The present study aimed to prepare and evaluate a film-forming gel of 5 fluorouracil (5FU) using different ratios of hydroxypropyl methylcellulose (HPMC) and Zein for treating vitiligo. The prepared film-forming gels were fully characterized in terms of morphology, Fourier-transform infrared spectroscopy, drug content, pH, drying time, <i>in-vitro</i> drug release, and clinical investigation. A 3<sup>2</sup>-full factorial design was used to study the impact of varying concentrations of HPMC (X1) and Zein (X2) on the percentage of 5FU released (Y1) from the prepared film-forming gels. Scanning electron microscopy (SEM) revealed a cross-linked network structure between polymers. An increase in HPMC concentration (2–4%) correlated with higher 5FU release, whereas increased Zein concentration (1–2%) resulted in reduced 5FU release. Furthermore, patients treated with 5FU film-forming gel after dermabrasion with fractional CO2 (FCO2) laser exhibited a significant decrease in JAK3 gene expression and higher effectiveness than those treated with FCO2 laser alone. Our results suggest that the film-forming gel of 5FU is promising as an effective formulation for treating vitiligo.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":6925,"journal":{"name":"AAPS PharmSciTech","volume":"25 7","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AAPS PharmSciTech","FirstCategoryId":"3","ListUrlMain":"https://link.springer.com/article/10.1208/s12249-024-02937-0","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Vitiligo is a significant dermatological challenge affecting 0.5 to 2% of the global population. Despite the various existing medical approaches, current vitiligo treatments are far from ideal. The present study aimed to prepare and evaluate a film-forming gel of 5 fluorouracil (5FU) using different ratios of hydroxypropyl methylcellulose (HPMC) and Zein for treating vitiligo. The prepared film-forming gels were fully characterized in terms of morphology, Fourier-transform infrared spectroscopy, drug content, pH, drying time, in-vitro drug release, and clinical investigation. A 32-full factorial design was used to study the impact of varying concentrations of HPMC (X1) and Zein (X2) on the percentage of 5FU released (Y1) from the prepared film-forming gels. Scanning electron microscopy (SEM) revealed a cross-linked network structure between polymers. An increase in HPMC concentration (2–4%) correlated with higher 5FU release, whereas increased Zein concentration (1–2%) resulted in reduced 5FU release. Furthermore, patients treated with 5FU film-forming gel after dermabrasion with fractional CO2 (FCO2) laser exhibited a significant decrease in JAK3 gene expression and higher effectiveness than those treated with FCO2 laser alone. Our results suggest that the film-forming gel of 5FU is promising as an effective formulation for treating vitiligo.
期刊介绍:
AAPS PharmSciTech is a peer-reviewed, online-only journal committed to serving those pharmaceutical scientists and engineers interested in the research, development, and evaluation of pharmaceutical dosage forms and delivery systems, including drugs derived from biotechnology and the manufacturing science pertaining to the commercialization of such dosage forms. Because of its electronic nature, AAPS PharmSciTech aspires to utilize evolving electronic technology to enable faster and diverse mechanisms of information delivery to its readership. Submission of uninvited expert reviews and research articles are welcomed.