{"title":"Asparagine as a signal for glutamine sufficiency via asparagine synthetase: a fresh evidence-based framework in physiology and oncology.","authors":"Babatunde Olawuni, Barrie P Bode","doi":"10.1152/ajpcell.00316.2024","DOIUrl":null,"url":null,"abstract":"<p><p>Among the 20 proteinogenic amino acids, glutamine (GLN) and asparagine (ASN) represent a unique cohort in containing a terminal amide in their side chain, and share a direct metabolic relationship, with glutamine generating asparagine through the ATP-dependent asparagine synthetase (ASNS) reaction. Circulating glutamine levels and metabolic flux through cells and tissues greatly exceed those for asparagine, and \"glutamine addiction\" in cancer has likewise received considerable attention. However, historic and recent evidence collectively suggest that in spite of its modest presence, asparagine plays an outsized regulatory role in cellular function. Here, we present a unifying evidence-based hypothesis that the amides constitute a regulatory signaling circuit, with glutamine as a driver and asparagine as a second messenger that allosterically regulates key biochemical and physiological functions, particularly cell growth and survival. Specifically, it is proposed that ASNS serves as a sensor of substrate sufficiency for S-phase entry and progression in proliferating cells. ASNS-generated asparagine serves as a subsequent second messenger that modulates the activity of key regulatory proteins and promotes survival in the face of cellular stress, and serves as a feed-forward driver of S-phase progression in cell growth. We propose that this signaling pathway be termed the amide signaling circuit (ASC) in homage to the <i>SLC1A5</i>-encoded ASCT2 that transports both glutamine and asparagine in a bidirectional manner, and has been implicated in the pathogenesis of a broad spectrum of human cancers. Support for the ASC model is provided by the recent discovery that glutamine is sensed in primary cilia via ASNS during metabolic stress.</p>","PeriodicalId":7585,"journal":{"name":"American journal of physiology. Cell physiology","volume":" ","pages":"C1335-C1346"},"PeriodicalIF":5.0000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of physiology. Cell physiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1152/ajpcell.00316.2024","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/30 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Among the 20 proteinogenic amino acids, glutamine (GLN) and asparagine (ASN) represent a unique cohort in containing a terminal amide in their side chain, and share a direct metabolic relationship, with glutamine generating asparagine through the ATP-dependent asparagine synthetase (ASNS) reaction. Circulating glutamine levels and metabolic flux through cells and tissues greatly exceed those for asparagine, and "glutamine addiction" in cancer has likewise received considerable attention. However, historic and recent evidence collectively suggest that in spite of its modest presence, asparagine plays an outsized regulatory role in cellular function. Here, we present a unifying evidence-based hypothesis that the amides constitute a regulatory signaling circuit, with glutamine as a driver and asparagine as a second messenger that allosterically regulates key biochemical and physiological functions, particularly cell growth and survival. Specifically, it is proposed that ASNS serves as a sensor of substrate sufficiency for S-phase entry and progression in proliferating cells. ASNS-generated asparagine serves as a subsequent second messenger that modulates the activity of key regulatory proteins and promotes survival in the face of cellular stress, and serves as a feed-forward driver of S-phase progression in cell growth. We propose that this signaling pathway be termed the amide signaling circuit (ASC) in homage to the SLC1A5-encoded ASCT2 that transports both glutamine and asparagine in a bidirectional manner, and has been implicated in the pathogenesis of a broad spectrum of human cancers. Support for the ASC model is provided by the recent discovery that glutamine is sensed in primary cilia via ASNS during metabolic stress.
期刊介绍:
The American Journal of Physiology-Cell Physiology is dedicated to innovative approaches to the study of cell and molecular physiology. Contributions that use cellular and molecular approaches to shed light on mechanisms of physiological control at higher levels of organization also appear regularly. Manuscripts dealing with the structure and function of cell membranes, contractile systems, cellular organelles, and membrane channels, transporters, and pumps are encouraged. Studies dealing with integrated regulation of cellular function, including mechanisms of signal transduction, development, gene expression, cell-to-cell interactions, and the cell physiology of pathophysiological states, are also eagerly sought. Interdisciplinary studies that apply the approaches of biochemistry, biophysics, molecular biology, morphology, and immunology to the determination of new principles in cell physiology are especially welcome.