Maternal thirdhand exposure to e-cigarette vapor alters lung and bone marrow immune cell responses in offspring in the absence or presence of influenza infection.
Chantal Donovan, Andrew E Thorpe, Rochelle Yarak, Madison Coward-Smith, Amber L Pillar, Henry M Gomez, Min Feng, Xu Bai, Meng Wang, Dia Xenaki, Jay C Horvat, Hui Chen, Brian G G Oliver, Richard Y Kim
{"title":"Maternal thirdhand exposure to e-cigarette vapor alters lung and bone marrow immune cell responses in offspring in the absence or presence of influenza infection.","authors":"Chantal Donovan, Andrew E Thorpe, Rochelle Yarak, Madison Coward-Smith, Amber L Pillar, Henry M Gomez, Min Feng, Xu Bai, Meng Wang, Dia Xenaki, Jay C Horvat, Hui Chen, Brian G G Oliver, Richard Y Kim","doi":"10.1152/ajplung.00078.2024","DOIUrl":null,"url":null,"abstract":"<p><p>There is increasing evidence that thirdhand exposure to e-cigarette vapor (e-vapor) can have detrimental effects on the lungs. However, whether maternal exposure during pregnancy results in harmful changes to the offspring is unknown. Using two different e-cigarette settings (low vs. high power), BALB/c mice were subjected to thirdhand e-vapor (e-vapor deposited onto towels, towels changed daily) in the absence or presence of nicotine, before, during, and after pregnancy. Male adult offspring were then infected with mouse-adapted influenza A virus (A/PR/8/34 H1N1; Flu) and lung and bone marrow immune cell responses were assessed 7 days postinfection. Maternal thirdhand exposure to low-power (<sub>M</sub>LP) or high-power (<sub>M</sub>HP) e-vapor with nicotine (<sub>M</sub>LP + NIC and <sub>M</sub>HP + NIC, respectively) increased the percentage of lung immune cells and neutrophils in the bone marrow. Interestingly, Flu-infected offspring from <sub>M</sub>LP + NIC and <sub>M</sub>HP + NIC groups had lower percentages of lung alveolar macrophages and more pronounced increases in neutrophils in the bone marrow, when compared with offspring from <sub>M</sub>Sham Flu controls. Flu infection also decreased the percentage of lung CD4+ T cells and increased the percentage of lung CD8+ T cells, irrespective of maternal exposure (<sub>M</sub>LP -/+ NIC and <sub>M</sub>HP -/+ NIC). Significantly, both <sub>M</sub>LP + NIC and <sub>M</sub>HP + NIC resulted in blunted activation of lung CD4+ T cells, but only <sub>M</sub>LP + NIC caused blunted activation of lung CD8+ T cells. Together, we show for the first time that maternal thirdhand exposure to e-vapor results in significant, long-lived effects on lung and bone marrow immune cell responses in offspring at baseline and response to Flu infection.<b>NEW & NOTEWORTHY</b> Maternal exposure to environmental residues of e-cigarette use has significant effects on immune cell responses in the lungs and bone marrow of offspring at both baseline and in response to influenza A virus (Flu) infection.</p>","PeriodicalId":7593,"journal":{"name":"American journal of physiology. Lung cellular and molecular physiology","volume":" ","pages":"L796-L806"},"PeriodicalIF":3.6000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of physiology. Lung cellular and molecular physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1152/ajplung.00078.2024","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/24 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
There is increasing evidence that thirdhand exposure to e-cigarette vapor (e-vapor) can have detrimental effects on the lungs. However, whether maternal exposure during pregnancy results in harmful changes to the offspring is unknown. Using two different e-cigarette settings (low vs. high power), BALB/c mice were subjected to thirdhand e-vapor (e-vapor deposited onto towels, towels changed daily) in the absence or presence of nicotine, before, during, and after pregnancy. Male adult offspring were then infected with mouse-adapted influenza A virus (A/PR/8/34 H1N1; Flu) and lung and bone marrow immune cell responses were assessed 7 days postinfection. Maternal thirdhand exposure to low-power (MLP) or high-power (MHP) e-vapor with nicotine (MLP + NIC and MHP + NIC, respectively) increased the percentage of lung immune cells and neutrophils in the bone marrow. Interestingly, Flu-infected offspring from MLP + NIC and MHP + NIC groups had lower percentages of lung alveolar macrophages and more pronounced increases in neutrophils in the bone marrow, when compared with offspring from MSham Flu controls. Flu infection also decreased the percentage of lung CD4+ T cells and increased the percentage of lung CD8+ T cells, irrespective of maternal exposure (MLP -/+ NIC and MHP -/+ NIC). Significantly, both MLP + NIC and MHP + NIC resulted in blunted activation of lung CD4+ T cells, but only MLP + NIC caused blunted activation of lung CD8+ T cells. Together, we show for the first time that maternal thirdhand exposure to e-vapor results in significant, long-lived effects on lung and bone marrow immune cell responses in offspring at baseline and response to Flu infection.NEW & NOTEWORTHY Maternal exposure to environmental residues of e-cigarette use has significant effects on immune cell responses in the lungs and bone marrow of offspring at both baseline and in response to influenza A virus (Flu) infection.
期刊介绍:
The American Journal of Physiology-Lung Cellular and Molecular Physiology publishes original research covering the broad scope of molecular, cellular, and integrative aspects of normal and abnormal function of cells and components of the respiratory system. Areas of interest include conducting airways, pulmonary circulation, lung endothelial and epithelial cells, the pleura, neuroendocrine and immunologic cells in the lung, neural cells involved in control of breathing, and cells of the diaphragm and thoracic muscles. The processes to be covered in the Journal include gas-exchange, metabolic control at the cellular level, intracellular signaling, gene expression, genomics, macromolecules and their turnover, cell-cell and cell-matrix interactions, cell motility, secretory mechanisms, membrane function, surfactant, matrix components, mucus and lining materials, lung defenses, macrophage function, transport of salt, water and protein, development and differentiation of the respiratory system, and response to the environment.