The misuse of respiratory resistive loading during aerobic exercises: revisiting mechanisms of "standalone" inspiratory muscle training.

IF 3.6 2区 医学 Q1 PHYSIOLOGY American journal of physiology. Lung cellular and molecular physiology Pub Date : 2024-12-01 Epub Date: 2024-09-24 DOI:10.1152/ajplung.00396.2023
Gabriel Dias Rodrigues, Alison K McConnell
{"title":"The misuse of respiratory resistive loading during aerobic exercises: revisiting mechanisms of \"standalone\" inspiratory muscle training.","authors":"Gabriel Dias Rodrigues, Alison K McConnell","doi":"10.1152/ajplung.00396.2023","DOIUrl":null,"url":null,"abstract":"<p><p>Systematic reviews and meta-analyses support the benefits of inspiratory muscle training (IMT) for sports and clinical populations. A typical application of \"standalone\" IMT intervention consists of breathing against an inspiratory load (IRL), twice daily, for 5-7 days/wk, for 4-12 wk. However, the application of IRL during aerobic exercise is often seen in a training routine of sports and rehabilitation centers with no evidence-based guide. In this Perspective, we will revisit putative mechanisms underlying the established benefits of \"standalone\" IMT to support our contention that IMT need not and should not be used during aerobic exercise.</p>","PeriodicalId":7593,"journal":{"name":"American journal of physiology. Lung cellular and molecular physiology","volume":" ","pages":"L815-L817"},"PeriodicalIF":3.6000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of physiology. Lung cellular and molecular physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1152/ajplung.00396.2023","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/24 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Systematic reviews and meta-analyses support the benefits of inspiratory muscle training (IMT) for sports and clinical populations. A typical application of "standalone" IMT intervention consists of breathing against an inspiratory load (IRL), twice daily, for 5-7 days/wk, for 4-12 wk. However, the application of IRL during aerobic exercise is often seen in a training routine of sports and rehabilitation centers with no evidence-based guide. In this Perspective, we will revisit putative mechanisms underlying the established benefits of "standalone" IMT to support our contention that IMT need not and should not be used during aerobic exercise.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
有氧运动中呼吸阻力负荷的滥用:重新审视 "独立 "吸气肌肉训练的机制。
系统回顾和荟萃分析支持吸气肌训练(IMT)对运动和临床人群的益处。典型的 "独立 "吸气肌训练干预包括针对吸气负荷(IRL)进行呼吸,每天两次,每周五到七天,持续四到十二周。然而,在有氧运动中应用 IRL 常常出现在体育和康复中心的日常训练中,并没有基于证据的指导。在本期 "当前观点 "中,我们将重新审视 "独立 "IMT 既定益处的推定机制,以支持我们的论点,即有氧运动期间不需要也不应该使用 IMT。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
9.20
自引率
4.10%
发文量
146
审稿时长
2 months
期刊介绍: The American Journal of Physiology-Lung Cellular and Molecular Physiology publishes original research covering the broad scope of molecular, cellular, and integrative aspects of normal and abnormal function of cells and components of the respiratory system. Areas of interest include conducting airways, pulmonary circulation, lung endothelial and epithelial cells, the pleura, neuroendocrine and immunologic cells in the lung, neural cells involved in control of breathing, and cells of the diaphragm and thoracic muscles. The processes to be covered in the Journal include gas-exchange, metabolic control at the cellular level, intracellular signaling, gene expression, genomics, macromolecules and their turnover, cell-cell and cell-matrix interactions, cell motility, secretory mechanisms, membrane function, surfactant, matrix components, mucus and lining materials, lung defenses, macrophage function, transport of salt, water and protein, development and differentiation of the respiratory system, and response to the environment.
期刊最新文献
Disruption of immune responses by type 1 diabetes exacerbates SARS-CoV-2 mediated lung injury. Eosinophils prevent diet-induced airway hyperresponsiveness in mice on a high-fat diet. Expression of Semaphorin3E/PlexinD1 in human airway smooth muscle cells of patients with COPD. Identification of FGFR4 as a regulator of myofibroblast differentiation in pulmonary fibrosis. Inference of alveolar capillary network connectivity from blood flow dynamics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1