Huibin Liu, Xiangyu Teng, Zezheng Qiao, Wenguang Yang, Bentao Zou
{"title":"Magnetically Driven Quadruped Soft Robot with Multimodal Motion for Targeted Drug Delivery.","authors":"Huibin Liu, Xiangyu Teng, Zezheng Qiao, Wenguang Yang, Bentao Zou","doi":"10.3390/biomimetics9090559","DOIUrl":null,"url":null,"abstract":"<p><p>Untethered magnetic soft robots show great potential for biomedical and small-scale micromanipulation applications due to their high flexibility and ability to cause minimal damage. However, most current research on these robots focuses on marine and reptilian biomimicry, which limits their ability to move in unstructured environments. In this work, we design a quadruped soft robot with a magnetic top cover and a specific magnetization angle, drawing inspiration from the common locomotion patterns of quadrupeds in nature and integrating our unique actuation principle. It can crawl and tumble and, by adjusting the magnetic field parameters, it adapts its locomotion to environmental conditions, enabling it to cross obstacles and perform remote transportation and release of cargo.</p>","PeriodicalId":8907,"journal":{"name":"Biomimetics","volume":"9 9","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11431042/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomimetics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/biomimetics9090559","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Untethered magnetic soft robots show great potential for biomedical and small-scale micromanipulation applications due to their high flexibility and ability to cause minimal damage. However, most current research on these robots focuses on marine and reptilian biomimicry, which limits their ability to move in unstructured environments. In this work, we design a quadruped soft robot with a magnetic top cover and a specific magnetization angle, drawing inspiration from the common locomotion patterns of quadrupeds in nature and integrating our unique actuation principle. It can crawl and tumble and, by adjusting the magnetic field parameters, it adapts its locomotion to environmental conditions, enabling it to cross obstacles and perform remote transportation and release of cargo.