Discussion on "LEAP: the latent exchangeability prior for borrowing information from historical data" by Ethan M. Alt, Xiuya Chang, Xun Jiang, Qing Liu, May Mo, H. Amy Xia, and Joseph G. Ibrahim.

IF 1.4 4区 数学 Q3 BIOLOGY Biometrics Pub Date : 2024-07-01 DOI:10.1093/biomtc/ujae084
Harlan Campbell, Paul Gustafson
{"title":"Discussion on \"LEAP: the latent exchangeability prior for borrowing information from historical data\" by Ethan M. Alt, Xiuya Chang, Xun Jiang, Qing Liu, May Mo, H. Amy Xia, and Joseph G. Ibrahim.","authors":"Harlan Campbell, Paul Gustafson","doi":"10.1093/biomtc/ujae084","DOIUrl":null,"url":null,"abstract":"<p><p>We commend Alt et al.'s innovative approach for analysis with a hybrid control arm while offering insights into two key considerations: the necessity for extrapolation and the potential benefits of curating historical control data before analysis.</p>","PeriodicalId":8930,"journal":{"name":"Biometrics","volume":"80 3","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biometrics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/biomtc/ujae084","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

We commend Alt et al.'s innovative approach for analysis with a hybrid control arm while offering insights into two key considerations: the necessity for extrapolation and the potential benefits of curating historical control data before analysis.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
关于 Ethan M. Alt、Xiuya Chang、Xun Jiang、Qing Liu、May Mo、H. Amy Xia 和 Joseph G. Ibrahim 所著《LEAP:从历史数据中借用信息的潜在可交换性先验》的讨论。
我们对 Alt 等人使用混合对照臂进行分析的创新方法表示赞赏,同时对两个关键考虑因素提出了见解:外推的必要性和分析前整理历史对照数据的潜在益处。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biometrics
Biometrics 生物-生物学
CiteScore
2.70
自引率
5.30%
发文量
178
审稿时长
4-8 weeks
期刊介绍: The International Biometric Society is an international society promoting the development and application of statistical and mathematical theory and methods in the biosciences, including agriculture, biomedical science and public health, ecology, environmental sciences, forestry, and allied disciplines. The Society welcomes as members statisticians, mathematicians, biological scientists, and others devoted to interdisciplinary efforts in advancing the collection and interpretation of information in the biosciences. The Society sponsors the biennial International Biometric Conference, held in sites throughout the world; through its National Groups and Regions, it also Society sponsors regional and local meetings.
期刊最新文献
Composite dyadic models for spatio-temporal data. ROMI: a randomized two-stage basket trial design to optimize doses for multiple indications. Bayesian network-guided sparse regression with flexible varying effects. Group sequential testing of a treatment effect using a surrogate marker. On network deconvolution for undirected graphs.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1