Santeri Karppinen, Liviu Ene, Lovisa Engberg Sundström, Juha Karvanen
{"title":"Planning cost-effective operational forest inventories.","authors":"Santeri Karppinen, Liviu Ene, Lovisa Engberg Sundström, Juha Karvanen","doi":"10.1093/biomtc/ujae104","DOIUrl":null,"url":null,"abstract":"<p><p>We address a Bayesian two-stage decision problem in operational forestry where the inner stage considers scheduling the harvesting to fulfill demand targets and the outer stage considers selecting the accuracy of pre-harvest inventories that are used to estimate the timber volumes of the forest tracts. The higher accuracy of the inventory enables better scheduling decisions but also implies higher costs. We focus on the outer stage, which we formulate as a maximization of the posterior value of the inventory decision under a budget constraint. The posterior value depends on the solution to the inner stage problem and its computation is analytically intractable, featuring an NP-hard binary optimization problem within a high-dimensional integral. In particular, the binary optimization problem is a special case of a generalized quadratic assignment problem. We present a practical method that solves the outer stage problem with an approximation which combines Monte Carlo sampling with a greedy, randomized method for the binary optimization problem. We derive inventory decisions for a dataset of 100 Swedish forest tracts across a range of inventory budgets and estimate the value of the information to be obtained.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/biomtc/ujae104","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
We address a Bayesian two-stage decision problem in operational forestry where the inner stage considers scheduling the harvesting to fulfill demand targets and the outer stage considers selecting the accuracy of pre-harvest inventories that are used to estimate the timber volumes of the forest tracts. The higher accuracy of the inventory enables better scheduling decisions but also implies higher costs. We focus on the outer stage, which we formulate as a maximization of the posterior value of the inventory decision under a budget constraint. The posterior value depends on the solution to the inner stage problem and its computation is analytically intractable, featuring an NP-hard binary optimization problem within a high-dimensional integral. In particular, the binary optimization problem is a special case of a generalized quadratic assignment problem. We present a practical method that solves the outer stage problem with an approximation which combines Monte Carlo sampling with a greedy, randomized method for the binary optimization problem. We derive inventory decisions for a dataset of 100 Swedish forest tracts across a range of inventory budgets and estimate the value of the information to be obtained.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.