Sony Amir, Muhammad Abid, Humaira Nadeem, Muhammad Khalid Tipu, Nadeem Irshad
{"title":"The nephroprotective potential of selected synthetic compound against gentamicin induced nephrotoxicity.","authors":"Sony Amir, Muhammad Abid, Humaira Nadeem, Muhammad Khalid Tipu, Nadeem Irshad","doi":"10.1186/s40360-024-00765-3","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Nephrotoxicity, the rapid impairment of kidney function caused by harmful drugs and chemicals, affects about 20% of cases and is projected to become a leading cause of death by reactive oxygen species (ROS). Gentamicin (GM), an aminoglycoside antibiotic is one of the well know drugs/chemicals to cause nephrotoxicity both in humans and animals.</p><p><strong>Methods: </strong>A study on the effects of a synthetic phenolic compound, called 5-a, on GM-induced nephrotoxicity in male Wistar albino rats was conducted. The rats were grouped into five groups: normal control (NC), GM control (GM), positive control (GM + Dexa), treatment I (GM + 5-a 5 mg/kg) and treatment II (GM + 5-a 10 mg/kg). Throughout the experiment, the rats' weights were monitored, and at its conclusion, their serum and kidney tissues were analyzed for renal function indicators and inflammatory markers. The study also included histopathological evaluations, molecular docking studies, blood and urine analyses for electrolyte changes, and behavioural assessments for central nervous system impact.</p><p><strong>Results: </strong>2-{5-[(2-hydroxyethyl)-sulfanyl]-1,3,4-oxadiazol-2-yl} phenol (5-a) significantly protected against renal damage by reducing inflammatory markers, improving antioxidant defences, and decreasing kidney injury, particularly at higher doses. The findings suggest that compound 5-a, due to its anti-inflammatory and antioxidant properties, could be a promising therapeutic option for reducing gentamicin-induced nephrotoxicity and potentially for other kidney disorders in the future.</p><p><strong>Conclusion: </strong>These findings highlight the therapeutic effects of compound 5-a in alleviating gentamicin-induced nephrotoxicity.</p>","PeriodicalId":9023,"journal":{"name":"BMC Pharmacology & Toxicology","volume":"25 1","pages":"68"},"PeriodicalIF":2.8000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11438099/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Pharmacology & Toxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s40360-024-00765-3","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Nephrotoxicity, the rapid impairment of kidney function caused by harmful drugs and chemicals, affects about 20% of cases and is projected to become a leading cause of death by reactive oxygen species (ROS). Gentamicin (GM), an aminoglycoside antibiotic is one of the well know drugs/chemicals to cause nephrotoxicity both in humans and animals.
Methods: A study on the effects of a synthetic phenolic compound, called 5-a, on GM-induced nephrotoxicity in male Wistar albino rats was conducted. The rats were grouped into five groups: normal control (NC), GM control (GM), positive control (GM + Dexa), treatment I (GM + 5-a 5 mg/kg) and treatment II (GM + 5-a 10 mg/kg). Throughout the experiment, the rats' weights were monitored, and at its conclusion, their serum and kidney tissues were analyzed for renal function indicators and inflammatory markers. The study also included histopathological evaluations, molecular docking studies, blood and urine analyses for electrolyte changes, and behavioural assessments for central nervous system impact.
Results: 2-{5-[(2-hydroxyethyl)-sulfanyl]-1,3,4-oxadiazol-2-yl} phenol (5-a) significantly protected against renal damage by reducing inflammatory markers, improving antioxidant defences, and decreasing kidney injury, particularly at higher doses. The findings suggest that compound 5-a, due to its anti-inflammatory and antioxidant properties, could be a promising therapeutic option for reducing gentamicin-induced nephrotoxicity and potentially for other kidney disorders in the future.
Conclusion: These findings highlight the therapeutic effects of compound 5-a in alleviating gentamicin-induced nephrotoxicity.
期刊介绍:
BMC Pharmacology and Toxicology is an open access, peer-reviewed journal that considers articles on all aspects of chemically defined therapeutic and toxic agents. The journal welcomes submissions from all fields of experimental and clinical pharmacology including clinical trials and toxicology.