Anterior and posterior thalamic volumes differentially correlate with memory, attention, and motor processes in HIV infection and alcohol use disorder comorbidity
Rosemary Fama , Stephanie A. Sassoon , Eva M. Müller-Oehring , Manojkumar Saranathan , Kilian M. Pohl , Natalie M. Zahr , Adolf Pfefferbaum , Edith V. Sullivan
{"title":"Anterior and posterior thalamic volumes differentially correlate with memory, attention, and motor processes in HIV infection and alcohol use disorder comorbidity","authors":"Rosemary Fama , Stephanie A. Sassoon , Eva M. Müller-Oehring , Manojkumar Saranathan , Kilian M. Pohl , Natalie M. Zahr , Adolf Pfefferbaum , Edith V. Sullivan","doi":"10.1016/j.brainresbull.2024.111085","DOIUrl":null,"url":null,"abstract":"<div><div>The thalamus, with its reciprocal connections to and from cortical, subcortical, and cerebellar regions, is a central active participant in multiple functional brain networks. Structural MRI studies measuring the entire thalamus without respect to its regional or nuclear divisions report volume shrinkage in diseases including HIV infection, alcohol use disorder (AUD), and their comorbidity (HIV+AUD). Here, we examined relations between thalamic subregions (anterior, ventral, medial, and posterior) and neuropsychological functions (attention/working memory, executive functioning, episodic memory, and motor skills). Volumes of thalamic subregions were derived from automatic segmentations of standard T1 weighted MRIs of 65 individuals with HIV, 189 with AUD, 80 with HIV+AUD comorbidity, and 141 healthy controls (CTRL). Total thalamic volume was smaller and cognitive and motor composite scores were lower in the three diagnostic groups relative to the CTRL group. The AUD and HIV+AUD groups had significantly smaller thalamic subregional volumes than the CTRL group. The HIV+AUD group had smaller anterior thalamic volume than the HIV-only group and smaller ventral thalamic volume than the AUD-only group. In the HIV+AUD group, memory scores correlated with anterior thalamic volumes, attention/working memory scores correlated with posterior and medial thalamic volumes, and motor skill scores correlated with posterior thalamic volumes. Exploratory analyses focused on the HIV+AUD group indicated that within the posterior thalamic region, the pulvinar and medial geniculate nuclei were related to attention/working memory scores, and the pulvinar was related to motor skills scores. This study is novel in locating volume deficits in specific thalamic subregions, in addition to the thalamus as a whole, in HIV, AUD, and their comorbidity and in identifying functional ramifications of these deficits. Taken together, this study highlights the relevance of thalamic subregional volume deficits to dissociable cognitive and motor processes.</div></div>","PeriodicalId":9302,"journal":{"name":"Brain Research Bulletin","volume":"217 ","pages":"Article 111085"},"PeriodicalIF":3.5000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Research Bulletin","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0361923024002193","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The thalamus, with its reciprocal connections to and from cortical, subcortical, and cerebellar regions, is a central active participant in multiple functional brain networks. Structural MRI studies measuring the entire thalamus without respect to its regional or nuclear divisions report volume shrinkage in diseases including HIV infection, alcohol use disorder (AUD), and their comorbidity (HIV+AUD). Here, we examined relations between thalamic subregions (anterior, ventral, medial, and posterior) and neuropsychological functions (attention/working memory, executive functioning, episodic memory, and motor skills). Volumes of thalamic subregions were derived from automatic segmentations of standard T1 weighted MRIs of 65 individuals with HIV, 189 with AUD, 80 with HIV+AUD comorbidity, and 141 healthy controls (CTRL). Total thalamic volume was smaller and cognitive and motor composite scores were lower in the three diagnostic groups relative to the CTRL group. The AUD and HIV+AUD groups had significantly smaller thalamic subregional volumes than the CTRL group. The HIV+AUD group had smaller anterior thalamic volume than the HIV-only group and smaller ventral thalamic volume than the AUD-only group. In the HIV+AUD group, memory scores correlated with anterior thalamic volumes, attention/working memory scores correlated with posterior and medial thalamic volumes, and motor skill scores correlated with posterior thalamic volumes. Exploratory analyses focused on the HIV+AUD group indicated that within the posterior thalamic region, the pulvinar and medial geniculate nuclei were related to attention/working memory scores, and the pulvinar was related to motor skills scores. This study is novel in locating volume deficits in specific thalamic subregions, in addition to the thalamus as a whole, in HIV, AUD, and their comorbidity and in identifying functional ramifications of these deficits. Taken together, this study highlights the relevance of thalamic subregional volume deficits to dissociable cognitive and motor processes.
期刊介绍:
The Brain Research Bulletin (BRB) aims to publish novel work that advances our knowledge of molecular and cellular mechanisms that underlie neural network properties associated with behavior, cognition and other brain functions during neurodevelopment and in the adult. Although clinical research is out of the Journal''s scope, the BRB also aims to publish translation research that provides insight into biological mechanisms and processes associated with neurodegeneration mechanisms, neurological diseases and neuropsychiatric disorders. The Journal is especially interested in research using novel methodologies, such as optogenetics, multielectrode array recordings and life imaging in wild-type and genetically-modified animal models, with the goal to advance our understanding of how neurons, glia and networks function in vivo.