Yang Zhao , Dainan Zhang , Bo Meng , Yong Zhang , Shunchang Ma , Jiaming Zeng , Xi Wang , Tao Peng , Xiaoyun Gong , Rui Zhai , Lianhua Dong , You Jiang , Xinhua Dai , Xiang Fang , Wang Jia
{"title":"Integrated proteomic and glycoproteomic analysis reveals heterogeneity and molecular signatures of brain metastases from lung adenocarcinomas","authors":"Yang Zhao , Dainan Zhang , Bo Meng , Yong Zhang , Shunchang Ma , Jiaming Zeng , Xi Wang , Tao Peng , Xiaoyun Gong , Rui Zhai , Lianhua Dong , You Jiang , Xinhua Dai , Xiang Fang , Wang Jia","doi":"10.1016/j.canlet.2024.217262","DOIUrl":null,"url":null,"abstract":"<div><div>Brain metastasis is a major cause of poor prognosis and death in lung adenocarcinoma (LUAD); however, the understanding of therapeutic strategies and mechanisms for brain metastases from LUAD (BM-LUAD) remains notably limited, especially at the proteomics levels. To address this issue, we conducted integrated proteomic and glycoproteomic analyses on 49 BM-LUAD tumors, revealing two distinct subtypes of the disease: BM-S1 and BM-S2. Whole exome sequencing analysis revealed that somatic mutations in STK11 and KEAP1, as well as copy number deletions on chr19p13.3, such as STK11, UQCR11, and SLC25A23, were more frequently detected in BM-S2. In BM-S1 tumors, we observed significant infiltration of GFAP + astrocytes, as evidenced by elevated levels of GFAP, GABRA2, GABRG1 and GAP43 proteins and an enrichment of astrocytic signatures in both our proteomic data and external spatial transcriptomic data. Conversely, BM-S2 tumors demonstrated higher levels of PD-1 immune cell infiltration, supported by the upregulation of PD-1 and LAG-3 genes. These findings suggest distinct microenvironmental adaptations required by the different BM-LUAD subtypes. Additionally, we observed unique glycosylation patterns between the subtypes, with increased fucosylation in BM-S1 and enhanced sialylation in BM-S2, primarily affected by glycosylation enzymes such as FUT9, B4GALT1, and ST6GAL1. Specifically, in BM-S2, these sialylation modifications are predominantly localized to the lysosomes, underscoring the critical role of N-glycosylation in the tumor progression of BM-LUAD. Overall, our study not only provides a comprehensive multi-omic data resource but also offers valuable biological insights into BM-LUAD, highlighting potential mechanisms and therapeutic targets for further investigation.</div></div>","PeriodicalId":9506,"journal":{"name":"Cancer letters","volume":"605 ","pages":"Article 217262"},"PeriodicalIF":9.1000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer letters","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304383524006578","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Brain metastasis is a major cause of poor prognosis and death in lung adenocarcinoma (LUAD); however, the understanding of therapeutic strategies and mechanisms for brain metastases from LUAD (BM-LUAD) remains notably limited, especially at the proteomics levels. To address this issue, we conducted integrated proteomic and glycoproteomic analyses on 49 BM-LUAD tumors, revealing two distinct subtypes of the disease: BM-S1 and BM-S2. Whole exome sequencing analysis revealed that somatic mutations in STK11 and KEAP1, as well as copy number deletions on chr19p13.3, such as STK11, UQCR11, and SLC25A23, were more frequently detected in BM-S2. In BM-S1 tumors, we observed significant infiltration of GFAP + astrocytes, as evidenced by elevated levels of GFAP, GABRA2, GABRG1 and GAP43 proteins and an enrichment of astrocytic signatures in both our proteomic data and external spatial transcriptomic data. Conversely, BM-S2 tumors demonstrated higher levels of PD-1 immune cell infiltration, supported by the upregulation of PD-1 and LAG-3 genes. These findings suggest distinct microenvironmental adaptations required by the different BM-LUAD subtypes. Additionally, we observed unique glycosylation patterns between the subtypes, with increased fucosylation in BM-S1 and enhanced sialylation in BM-S2, primarily affected by glycosylation enzymes such as FUT9, B4GALT1, and ST6GAL1. Specifically, in BM-S2, these sialylation modifications are predominantly localized to the lysosomes, underscoring the critical role of N-glycosylation in the tumor progression of BM-LUAD. Overall, our study not only provides a comprehensive multi-omic data resource but also offers valuable biological insights into BM-LUAD, highlighting potential mechanisms and therapeutic targets for further investigation.
期刊介绍:
Cancer Letters is a reputable international journal that serves as a platform for significant and original contributions in cancer research. The journal welcomes both full-length articles and Mini Reviews in the wide-ranging field of basic and translational oncology. Furthermore, it frequently presents Special Issues that shed light on current and topical areas in cancer research.
Cancer Letters is highly interested in various fundamental aspects that can cater to a diverse readership. These areas include the molecular genetics and cell biology of cancer, radiation biology, molecular pathology, hormones and cancer, viral oncology, metastasis, and chemoprevention. The journal actively focuses on experimental therapeutics, particularly the advancement of targeted therapies for personalized cancer medicine, such as metronomic chemotherapy.
By publishing groundbreaking research and promoting advancements in cancer treatments, Cancer Letters aims to actively contribute to the fight against cancer and the improvement of patient outcomes.