Deregulation of Melatonin Receptors and Differential Modulation of After-Hyperpolarization and Ih Currents Using Melatonin Treatment Due to Amyloid-β-Induced Neurotoxicity in the Hippocampus
Mohammad J. Eslamizade, Fatemeh Saffarzadeh, Sanaz Khatami, Shima Davoudi, Zahra Soleimani, Sara Anajafi, Amineh Khoshnazar, Mehdi Mehdizadeh, Samira Mohammadi-Yeganeh, Mahyar Janahmadi
{"title":"Deregulation of Melatonin Receptors and Differential Modulation of After-Hyperpolarization and Ih Currents Using Melatonin Treatment Due to Amyloid-β-Induced Neurotoxicity in the Hippocampus","authors":"Mohammad J. Eslamizade, Fatemeh Saffarzadeh, Sanaz Khatami, Shima Davoudi, Zahra Soleimani, Sara Anajafi, Amineh Khoshnazar, Mehdi Mehdizadeh, Samira Mohammadi-Yeganeh, Mahyar Janahmadi","doi":"10.1002/cbf.4129","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Treatment with melatonin is routinely prescribed for its potent antioxidant and cognitive-promoting effects, nevertheless, it has yet to find neuromodulatory effects in normal and disease conditions. Therefore, to investigate its neuromodulatory mechanisms, melatonin was systemically administered over 10 consecutive days to both intracortical normal saline- and amyloid-β 1-42 (Aβ) peptide-injected rats. At the behavioral level, treatment with melatonin was associated with reduced efficacy in restoring Aβ-induced deficit in passive-avoidance memory. Whole-cell patch-clamp recordings from CA1 pyramidal neurons revealed that melatonin treatment reduced spontaneous and evoked intrinsic excitability in control rats while exerting a reduction of spontaneous, but not evoked activity, in the Aβ-injected group. Interestingly, treatment with melatonin enhances after-hyperpolarization in control, but not Aβ-injected rats. In contrast, our voltage-clamp study showed that Ih current is significantly enhanced by Aβ injection, and this effect is further strengthened by treatment with melatonin in Aβ-injected rats. Finally, we discovered that the transcription of melatonin receptors 1 (<i>MT1</i>) and 2 (<i>MT2</i>) is significantly upregulated in the hippocampi of Aβ-injected rats. Collectively, our study demonstrates that systemic treatment with melatonin has differential neuromodulation on CA1 neuronal excitability, at least in part, via differential effects on after-hyperpolarization and Ih currents due to Aβ-induced neurotoxicity.</p></div>","PeriodicalId":9669,"journal":{"name":"Cell Biochemistry and Function","volume":"42 7","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Biochemistry and Function","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cbf.4129","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Treatment with melatonin is routinely prescribed for its potent antioxidant and cognitive-promoting effects, nevertheless, it has yet to find neuromodulatory effects in normal and disease conditions. Therefore, to investigate its neuromodulatory mechanisms, melatonin was systemically administered over 10 consecutive days to both intracortical normal saline- and amyloid-β 1-42 (Aβ) peptide-injected rats. At the behavioral level, treatment with melatonin was associated with reduced efficacy in restoring Aβ-induced deficit in passive-avoidance memory. Whole-cell patch-clamp recordings from CA1 pyramidal neurons revealed that melatonin treatment reduced spontaneous and evoked intrinsic excitability in control rats while exerting a reduction of spontaneous, but not evoked activity, in the Aβ-injected group. Interestingly, treatment with melatonin enhances after-hyperpolarization in control, but not Aβ-injected rats. In contrast, our voltage-clamp study showed that Ih current is significantly enhanced by Aβ injection, and this effect is further strengthened by treatment with melatonin in Aβ-injected rats. Finally, we discovered that the transcription of melatonin receptors 1 (MT1) and 2 (MT2) is significantly upregulated in the hippocampi of Aβ-injected rats. Collectively, our study demonstrates that systemic treatment with melatonin has differential neuromodulation on CA1 neuronal excitability, at least in part, via differential effects on after-hyperpolarization and Ih currents due to Aβ-induced neurotoxicity.
期刊介绍:
Cell Biochemistry and Function publishes original research articles and reviews on the mechanisms whereby molecular and biochemical processes control cellular activity with a particular emphasis on the integration of molecular and cell biology, biochemistry and physiology in the regulation of tissue function in health and disease.
The primary remit of the journal is on mammalian biology both in vivo and in vitro but studies of cells in situ are especially encouraged. Observational and pathological studies will be considered providing they include a rational discussion of the possible molecular and biochemical mechanisms behind them and the immediate impact of these observations to our understanding of mammalian biology.