Renée Daams, Thi Thu Phuong Tran, Mohamed Jemaà, Wondossen Sime, Ruta Mickeviciute, Sara Ek, Lars Rönnstrand, Julhash U Kazi, Ramin Massoumi
{"title":"Enhancing cell death in B-cell malignancies through targeted inhibition of Bcl-3.","authors":"Renée Daams, Thi Thu Phuong Tran, Mohamed Jemaà, Wondossen Sime, Ruta Mickeviciute, Sara Ek, Lars Rönnstrand, Julhash U Kazi, Ramin Massoumi","doi":"10.1038/s41419-024-07067-w","DOIUrl":null,"url":null,"abstract":"<p><p>The t(14;19)(q32;q13) is a rare recurring translocation found in B-cell lymphoproliferative malignancies, involving the Bcl-3 gene. This chromosomal translocation is often found in patients under the age of 50 and causes a more progressive disease. The Bcl-3 gene encodes a protein belonging to the IκB family of proteins, which tightly regulates NFκB signaling by acting as an activator or repressor of transcription. Previously, we developed a second-generation Bcl-3 inhibitor that could directly interfere with Bcl-3 signaling pathway, resulting in reduced melanoma cell proliferation, invasion, and migration. The present study aimed to investigate the effect of a Bcl-3 inhibitor on B-cell lymphoma and leukemia cells. It was found that treatment of cells with this inhibitor caused a decrease in cell proliferation and cell survival. Furthermore, Bcl-3 inhibition in B-cell malignant cells resulted in the loss of mitochondrial membrane potential and functionality, as well as the increased expression of cleaved caspase 3, indicating that cell death occurs through the intrinsic apoptotic pathway. This observation is further supported by reduced expression of cIAP1 protein 1 (cIAP1) upon treatment of cancer cells. Given the current lack of clinical advancements targeting Bcl-3 in oncology, this opens a novel avenue for the development and investigation of highly specific therapeutic interventions against B-cell malignancies.</p>","PeriodicalId":9734,"journal":{"name":"Cell Death & Disease","volume":null,"pages":null},"PeriodicalIF":8.1000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11427694/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Death & Disease","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41419-024-07067-w","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The t(14;19)(q32;q13) is a rare recurring translocation found in B-cell lymphoproliferative malignancies, involving the Bcl-3 gene. This chromosomal translocation is often found in patients under the age of 50 and causes a more progressive disease. The Bcl-3 gene encodes a protein belonging to the IκB family of proteins, which tightly regulates NFκB signaling by acting as an activator or repressor of transcription. Previously, we developed a second-generation Bcl-3 inhibitor that could directly interfere with Bcl-3 signaling pathway, resulting in reduced melanoma cell proliferation, invasion, and migration. The present study aimed to investigate the effect of a Bcl-3 inhibitor on B-cell lymphoma and leukemia cells. It was found that treatment of cells with this inhibitor caused a decrease in cell proliferation and cell survival. Furthermore, Bcl-3 inhibition in B-cell malignant cells resulted in the loss of mitochondrial membrane potential and functionality, as well as the increased expression of cleaved caspase 3, indicating that cell death occurs through the intrinsic apoptotic pathway. This observation is further supported by reduced expression of cIAP1 protein 1 (cIAP1) upon treatment of cancer cells. Given the current lack of clinical advancements targeting Bcl-3 in oncology, this opens a novel avenue for the development and investigation of highly specific therapeutic interventions against B-cell malignancies.
期刊介绍:
Brought to readers by the editorial team of Cell Death & Differentiation, Cell Death & Disease is an online peer-reviewed journal specializing in translational cell death research. It covers a wide range of topics in experimental and internal medicine, including cancer, immunity, neuroscience, and now cancer metabolism.
Cell Death & Disease seeks to encompass the breadth of translational implications of cell death, and topics of particular concentration will include, but are not limited to, the following:
Experimental medicine
Cancer
Immunity
Internal medicine
Neuroscience
Cancer metabolism